Abstract:
Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material. The systems and methods include drilling the wellbore and determining that the wellbore has intersected a portion of the subterranean structure that includes the marker material by detecting the marker material. The systems and methods also may include distributing the marker material within the subterranean structure, aligning the marker material within the subterranean structure, determining one or more characteristics of the marker material, ceasing the drilling, repeating the method, and/or producing a hydrocarbon from the subterranean structure. The systems and methods further may include forming an electrical connection between an electric current source and a granular resistive heater that forms a portion of the subterranean structure, forming the granular resistive heater, and/or forming the subterranean structure.
Abstract:
A method of producing hydrocarbon fluids with improved hydrocarbon compound properties from a subsurface organic-rich rock formation, such as an oil shale formation, is provided. The method may include the step of heating the organic-rich rock formation in situ. In accordance with the method, the heating of the organic-rich rock formation may pyrolyze at least a portion of the formation hydrocarbons, for example kerogen, to create hydrocarbon fluids. Thereafter, the hydrocarbon fluids may be produced from the formation. Hydrocarbon fluids with improved hydrocarbon compound properties are also provided.
Abstract:
Systems and methods for controlling in situ resistive heating elements may be utilized to enhance hydrocarbon production within a subterranean formation. An in situ resistive heating element may be controlled by heating a controlled region associated with the in situ resistive heating element, injecting a control gas into the controlled region, and adjusting the electrical conductivity of the controlled region with the control gas. The controlled region may be located such that the heating and injecting may change the shape of the in situ resistive heating element and/or guide the in situ resistive heating element towards subterranean regions of potentially higher productivity and/or of higher organic matter.
Abstract:
Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material. The systems and methods include drilling the wellbore and determining that the wellbore has intersected a portion of the subterranean structure that includes the marker material by detecting the marker material. The systems and methods also may include distributing the marker material within the subterranean structure, aligning the marker material within the subterranean structure, determining one or more characteristics of the marker material, ceasing the drilling, repeating the method, and/or producing a hydrocarbon from the subterranean structure. The systems and methods further may include forming an electrical connection between an electric current source and a granular resistive heater that forms a portion of the subterranean structure, forming the granular resistive heater, and/or forming the subterranean structure.
Abstract:
A method of producing hydrocarbon fluids with improved hydrocarbon compound properties from a subsurface organic-rich rock formation, such as an oil shale formation, is provided. The method may include the step of heating the organic-rich rock formation in situ. In accordance with the method, the heating of the organic-rich rock formation may pyrolyze at least a portion of the formation hydrocarbons, for example kerogen, to create hydrocarbon fluids. Thereafter, the hydrocarbon fluids may be produced from the formation. Hydrocarbon fluids with improved hydrocarbon compound properties are also provided.
Abstract:
Method and system is described for marine surveying. The method involves operations for exploring and developing hydrocarbons with one or more unmanned vehicles. The unmanned vehicles are used to perform marine surveying and to obtain one or more samples that may be used to identify chemical, hydrocarbon and/or biologic information, which may be used for environmental monitoring of bodies of water.
Abstract:
Systems and methods for regulating an in situ pyrolysis process. The methods may include producing a product fluid stream from an active pyrolysis region of a subterranean formation. The methods further may include detecting a concentration of a first component in the product fluid stream and/or detecting a concentration of a second component in the product fluid stream. The concentration of the first component may be indicative of an intensive property of the pyrolyzed fluid production system. The concentration of the second component may be indicative of an extensive property of the pyrolyzed fluid production system. The methods further may include regulating at least one characteristic of the pyrolyzed fluid production system based upon the concentration of the first component and/or based upon the concentration of the second component. The systems may include systems that are configured to perform the methods.
Abstract:
A method for pyrolyzing organic matter in a subterranean formation includes powering a first generation in situ resistive heating element within an aggregate electrically conductive zone at least partially in a first region of the subterranean formation by transmitting an electrical current between a first electrode pair in electrical contact with the first generation in situ resistive heating element to pyrolyze a second region of the subterranean formation, adjacent the first region, to expand the aggregate electrically conductive zone into the second region, wherein the expanding creates a second generation in situ resistive heating element within the second region and powering the second generation in situ resistive heating element by transmitting an electrical current between a second electrode pair in electrical contact with the second generation in situ resistive heating element to generate heat with the second generation in situ resistive heating element within the second region.
Abstract:
A method for heating a subsurface formation using electrical resistance heating is provided. The method includes placing a first electrically conductive proppant into a fracture within an interval of organic-rich rock. The first electrically conductive proppant has a first bulk resistivity. The method further includes placing a second electrically conductive proppant into the fracture. The second electrically conductive proppant has a second bulk resistivity that is lower than the first bulk resistivity, and is in electrical communication with the first proppant at three or more terminal locations. The method then includes passing an electric current through the second electrically conductive proppant at a selected terminal and through the first electrically conductive proppant, such that heat is generated within the fracture by electrical resistivity. The operator may monitor resistance and switch terminals for the most efficient heating. A system for electrically heating an organic-rich rock formation below an earth surface is also provided.
Abstract:
Systems and methods for improved subterranean granular resistive heaters. The methods may include forming a composite granular resistive heating material. These methods may include determining an expected operating range for an environmental parameter for the composite granular resistive heating material within a subterranean formation, selecting a first material, selecting a second material, and/or generating the composite granular resistive heating material from the first material and the second material. The methods may include forming a granular resistive heater. The methods may include determining the expected operating range and/or locating the composite granular resistive heating material within the subterranean formation. The systems may include a composite granular resistive heating material that includes a first material and a second material and that defines a composite functional relationship between an electrical property of the composite granular resistive heating material and the environmental parameter. The composite functional relationship includes a mathematical extremum.