Abstract:
A semisubmersible with a plurality of surface piercing columns, a plurality of pontoons attached to and extending between pairs of adjacent surface piercing columns, a tunnel side formed between a first pair of surface piercing columns, an additional tunnel side formed between a second pair of surface piercing columns, a tunnel floor formed between the tunnel sides. A tunnel opening formed between the tunnel sides for receiving a floating vessel into the tunnel structure, and a main deck secured to the plurality of surface piercing columns. The semisubmersible can be ballasted to an operational depth and deballested to a transit depth.
Abstract:
A semisubmersible with a plurality of surface piercing columns, a plurality of pontoons attached to and extending between pairs of adjacent surface piercing columns, a tunnel side formed between a first pair of surface piercing columns, an additional tunnel side formed between a second pair of surface piercing columns, a tunnel floor formed between the tunnel sides. A tunnel opening formed between the tunnel sides for receiving a floating vessel into the tunnel structure, and a main deck secured to the plurality of surface piercing columns. The semisubmersible can be ballasted to an operational depth and deballested to a transit depth.
Abstract:
A buoyant structure having a hull, a main deck, an upper frustoconical portion, a lower frustoconical side section, a lower ellipsoidal section and a matching ellipsoidal keel with a tunnel formed within the hull for containing water to an operational depth creating a passageway to locations exterior of the hull and dimensioned to receive a watercraft. The tunnel having a plurality of tunnel sides, a tunnel floor formed between the tunnel sides and a plurality of dynamic movable tendering mechanisms connected to each tunnel side. The dynamic movable tendering mechanisms connected proximate to the operational depth for contacting with at least one side of a watercraft, enabling the tunnel to receive a watercraft securely for loading and unloading while the buoyant structure is at an operational depth on a body of water.
Abstract:
A buoyant structure having a hull, a main deck, an upper cylindrical side section extending downwardly from the main deck, an upper frustoconical side section, a cylindrical neck, a lower ellipsoidal section that extends from the cylindrical neck, an ellipsoidal keel and a fin-shaped appendage secured to a lower and an outer portion of the exterior of the ellipsoid keel. The upper frustoconical side section located below the upper cylindrical side section and maintained to be above a water line for a transport depth and partially below the water line for an operational depth of the buoyant structure.
Abstract:
An offshore structure having a hull, an upper vertical wall, an upper inwardly-tapered wall disposed below the upper vertical wall, a lower outwardly-tapered wall disposed below the upper sloped wall, and a lower vertical wall disposed below the lower sloped wall. The upper and lower sloped walls produce significant heave damping in response to heavy wave action. A heavy slurry of hematite and water ballast is added to the lower and outermost portions of the hull to lower the center of gravity below the center of buoyancy. The offshore structure provides one or more movable hawser connections that allow a tanker vessel to moor directly to the offshore structure during offloading rather than mooring to a separate buoy at some distance from the offshore storage structure. The movable hawser connection includes an arcuate rail with a movable trolley that provides a hawser connection point that allows vessel weathervaning.
Abstract:
An offshore structure having a hull, an upper vertical wall, an upper inwardly-tapered wall disposed below the upper vertical wall, a lower outwardly-tapered wall disposed below the upper sloped wall, and a lower vertical wall disposed below the lower sloped wall. The upper and lower sloped walls produce significant heave damping in response to heavy wave action. A heavy slurry of hematite and water ballast is added to the lower and outermost portions of the hull to lower the center of gravity below the center of buoyancy. The offshore structure provides one or more movable hawser connections that allow a tanker vessel to moor directly to the offshore structure during offloading rather than mooring to a separate buoy at some distance from the offshore storage structure. The movable hawser connection includes an arcuate rail with a movable trolley that provides a hawser connection point that allows vessel weathervaning.