Abstract:
The subject invention is directed to fibers and polymer blend compositions having improved bonding performance. In particular, the subject invention pertains to a multiconstituent fiber comprising a blend of a polypropylene polymer and a high molecular weight (i.e. low melt index or melt flow) ethylene polymer. The subject invention further pertains to the use of the fiber and polymer blend composition which has improved bonding performance in various end-use applications, especially woven and nonwoven fabrics such as, for example, disposable incontinence garments and diapers. The fibers have good spinnability and provide fabrics having improved bond strength and elongation.
Abstract:
The present invention pertains to carpet and methods of making carpet. In one aspect, the carpet includes (a) a primary backing which has a face and a back surface, (b) a plurality of fibers attached to the primary backing and extending from the face of the primary backing and exposed at the back surface of the primary backing, (c) an adhesive backing, (d) an optional secondary backing adjacent to the adhesive backing, and (e) at least one homogeneously branched ethylene polymer. The method includes extrusion coating at least one homogeneously branched ethylene polymer onto the back surface of a primary backing to provide an adhesive backing. The method can include additional steps or procedures, either separately or in various combinations. Additional steps and procedures include washing or scouring the primary backing and fibers prior to the extrusion step, and utilizing implosion agents. The preferred homogeneously branched ethylene polymer is a substantially linear ethylene polymer. The constructions and methods described herein are particularly suited for making tufted, broad-loom carpet having improved abrasion resistance.
Abstract:
The elasticity of elastic, absorbent structures, e.g., diapers, is improved without a significant compromise of the absorbency of the structure by the use of bicomponent and/or biconstituent elastic fiber. The absorbent structures typically comprise a staple fiber, e.g., cellulose fibers, and a bicomponent and/or a biconstituent elastic. The bicomponent fiber typically has a core/sheath construction. The core comprises an elastic thermoplastic elastomer, preferably a TPU, and the sheath comprises a homogeneously branched polyolefin, preferably a homogeneously branched substantially linear ethylene polymer. In various embodiments of the invention, the elasticity is improved by preparation techniques that enhance the ratio of elastic fiber:cellulose fiber versus cellulose fiber:cellulose fiber bonding. These techniques include wet and dry high intensity agitation of the elastic fibers prior to mixing with the cellulose fibers, deactivation of hydrogen bonding between cellulose fibers, and grafting the elastic fiber with a polar group containing compound, e.g. maleic anhydride.
Abstract:
The present invention pertains to carpet and methods of making carpet. In one aspect, the carpet includes (a) a primary backing which has a face and a back surface, (b) a plurality of fibers attached to the primary backing and extending from the face of the primary backing and exposed at the back surface of the primary backing, (c) an adhesive backing, (d) an optional secondary backing adjacent to the adhesive backing, and (e) at least one homogeneously branched ethylene polymer. The method includes extrusion coating at least one homogeneously branched ethylene polymer onto the back surface of a primary backing to provide an adhesive backing. The method can include additional steps or procedures, either separately or in various combinations. Additional steps and procedures include washing or scouring the primary backing and fibers prior to the extrusion step, and utilizing implosion agents. The preferred homogeneously branched ethylene polymer is a substantially linear ethylene polymer. The constructions and methods described herein are particularly suited for making tufted, broad-loom carpet having improved abrasion resistance.
Abstract:
The elasticity of elastic, absorbent structures, e.g., diapers, is improved without a significant compromise of the absorbency of the structure by the use of bicomponent and/or biconstituent elastic fibers. The absorbent structures typically comprise a staple fiber, e.g., cellulose fibers, and a bicomponent and/or a biconstituent elastic. The bicomponent fiber typically has a core/sheath construction. The core comprises an elastic thermoplastic elastomer, preferably a TPU, and the sheath comprises a homogeneously branched polyolefin, preferably a homogeneously branched substantially linear ethylene polymer. In various embodiments of the invention, the elasticity is improved by preparation techniques that enhance the ratio of elastic fiber:cellulose fiber bonding versus cellulose fiber:cellulose fiber bonding. These techniques include wet and dry high intensity agitation of the elastic fibers prior to mixing with the cellulose fibers, deactivation of the hydrogen bonding between cellulose fibers, and grafting the elastic fiber with a polar group containing compound, e.g. maleic anhydride.
Abstract:
Elastic fibers and fabrics made from homogeneously branched substantially linear ethylene polymers are disclosed which can be produced on conventional polypropylene or polyethylene fiber or fabric processes. They can be used to produce highly elastic structures that can have recycle compatibility between elastic and non-elastic components. The novel fibers have at least about 50% recovery at 100% strain. The fibers and fabrics are especially useful in making fabricated articles and components thereof (e.g., disposable diapers).
Abstract:
Elastic fibers and fabrics made from homogeneously branched linear ethylene polymers are disclosed. The elastic fibers and fabrics can be used to produce structures that can have recycle compatibility between elastic and non elastic components. The novel fibers have at least about 50% recovery at 100% strain. The fibers and fabrics are especially useful in making fabricated articles and components thereof (e.g., disposable diapers).
Abstract:
Elastic fibers and fabrics made from homogeneously branched substantially linear ethylene polymers are disclosed which can be produced on conventional polypropylene or polyethylene fiber or fabric processes. They can be used to produce highly elastic structures that can have recycle compatibility between elastic and non-elastic components. The novel fibers have at least about 50% recovery at 100% strain. The fibers and fabrics are especially useful in making fabricated articles and components thereof (e.g., disposable diapers).
Abstract:
A multilayer film is provided in the form of an extruded sheet for food wrapping and cooking procedures. The film is made up of alternating layers of a first generally ductile material and a second generally brittle material. Upon wrapping a food item or container, the film exhibits dead fold and/or twistability characteristics. In one embodiment, the materials of the film are chosen to have softening points above about 450 degrees F. so that the film can be used in conventional ovens.
Abstract:
Disclosed herein are carpets and carpet tiles comprising a primary backing material having a face and a back side; a plurality of fibers attached to the primary backing material and extending from the face of the primary backing material and exposed at the back side of the primary backing material; and an adhesive composition. The adhesive composition generally comprises at least one homogenously branched ethylene polymer. Also disclosed are methods for manufacturing the disclosed carpets and carpet tiles.