Abstract:
A memory cell array including at least one memory cell, an address storage section containing address information, an address judging circuit for judging whether an input address matches the address information in the address storage section and outputting a result of the judgment, and a write or erase voltage generation circuit for generating a write or erase voltage to be applied to the memory cell are provided. The write or erase voltage generation circuit receives the output result from the address judging circuit and changes a write or erase voltage.
Abstract:
The present invention is directed to methods for the identification and uses of a receptors that interact with anti-inflammatory compounds derived from eicosapentaenoic acid (EPA). The receptors are of the G-protein coupled receptor (GPCR) family, and are useful to screen candidate substances for anti-inflammatory activity, especially substances that are analogs of EPA. Such analogs are termed “resolvins”; and are typically di- and tri-hydroxy EPA analogs. One analog herein denoted Resolvin E1 was identified in humans and prepared by total synthesis. In nanomolar range Resolvin E1 reduces dermal inflammation, peritonitis, dendritic cells (DCs) migration and IL-12 production. Also described herein is a receptor denoted Reso ER1 that interacts with Resolvin E1 to attenuate cytokine induced activation of inflammatory pathways mediated by transcription factor (NF)-kB. Treatment of DCs with small-interfering RNA specific for ResoE1 eliminated the ligand's ability to regulate IL-12. Assays of anti-inflammatory activity based on these discoveries are also described.
Abstract:
A memory cell array for memorizing data with any of 0th through fourth threshold voltages and a flag memory unit for memorizing a flag data showing a chronological sequence relationship between writing operations in which data in first and second pages are respectively written are provided. A controller shifts a state of the memory cell from the 0th state to the 0th or first state in accordance with the data in the first page, and shifts the state of the memory cell to any of the 0th, first, second and third states in accordance with the data in the second page in a “forward” writing operation. The controller shifts the state of the memory cell from the 0th state to the 0th or third state in accordance with the data in the second page, and shifts the state of the memory cell to any of the 0th, first, third and fourth states in accordance with the data in the first page in a “reverse” writing operation. A flag data showing the “reverse” writing operation is then memorized in the flag memory unit.
Abstract:
A memory cell array for memorizing data with any of 0th through fourth threshold voltages and a flag memory unit for memorizing a flag data showing a chronological sequence relationship between writing operations in which data in first and second pages are respectively written are provided. A controller shifts a state of the memory cell from the 0th state to the 0th or first state in accordance with the data in the first page, and shifts the state of the memory cell to any of the 0th, first, second and third states in accordance with the data in the second page in a “forward” writing operation. The controller shifts the state of the memory cell from the 0th state to the 0th or third state in accordance with the data in the second page, and shifts the state of the memory cell to any of the 0th, first, third and fourth states in accordance with the data in the first page in a “reverse” writing operation. A flag data showing the “reverse” writing operation is then memorized in the flag memory unit.
Abstract:
The present invention is directed to methods for the identification and uses of a receptors that interact with anti-inflammatory compounds derived from eicosapentaenoic acid (EPA). The receptors are of the G-protein coupled receptor (GPCR) family, and are useful to screen candidate substances for anti-inflammatory activity, especially substances that are analogs of EPA. Such analogs are termed “resolvins”; and are typically di- and tri-hydroxy EPA analogs. One analog herein denoted Resolvin E1 was identified in humans and prepared by total synthesis. In nanomolar range Resolvin E1 reduces dermal inflammation, peritonitis, dendritic cells (DCs) migration and IL-12 production. Also described herein is a receptor denoted Reso ER1 that interacts with Resolvin E1 to attenuate cytokine induced activation of inflammatory pathways mediated by transcription factor (NF)-kB. Treatment of DCs with small-interfering RNA specific for ResoE1 eliminated the ligand's ability to regulate IL-12. Assays of anti-inflammatory activity based on these discoveries are also described.
Abstract:
An object of the present invention is to provide a compound having a novel structure for overcoming the defects of conventional steroid agents and NSAIDs. It is found that the particular dihydroxy bodies of eicosapentaenoic acid and docosahexaenoic acid, which have not conventionally been known (11,18-dihydroxy eicosapentaenoic acid (11,18-diHEPE), 17,18-dihydroxy eicosapentaenoic acid (17,18-diHEPE) etc.), have activity of inhibiting neutrophil, thereby solving the object. The present invention unexpectedly remarkably inhibits infiltration into a tissue of, and activation of neutrophil found out at acute inflammation. The compound of the present invention is a compound which has not conventionally been known. Therefore, utility as a new therapeutic is provided.
Abstract:
The purpose is to provide a compound which can overcomes the disadvantages of conventional steroid drugs and NSAID. It is found that specific epoxy monohydroxy forms of eicosapentaenoic acid, docosahexaenoic acid and docosapentaenoic acid which are independently represented by formulae [chemical formula 1], [chemical formula 5] and the like have an inhibitory activity on neutrophils. This compound can inhibit the invasion of neutrophils into tissues and the activation of neutrophils which are observed in acute inflammations.
Abstract:
The purpose is to provide a compound which can overcomes the disadvantages of conventional steroid drugs and NSAID. It is found that specific epoxy monohydroxy forms of eicosapentaenoic acid, docosahexaenoic acid and docosapentaenoic acid which are independently represented by formulae [chemical formula 1], [chemical formula 5] and the like have an inhibitory activity on neutrophils. This compound can inhibit the invasion of neutrophils into tissues and the activation of neutrophils which are observed in acute inflammations.
Abstract:
There is provided a method for controlling a semiconductor memory which includes a memory cell array including a plurality of multivalued memory cells where, in each of the memory cells, a first write operation allows storage of data in a first page address and a second write operation allows storage of data in a second page address, the method comprising an address conversion table processing step and an address scramble step. At the address conversion table processing step, an address conversion table for address conversion is generated by, in each of the plurality of multivalued memory cells, allocating addresses in which writing is to be performed to addresses such that data is written in a second page address after writing of data in a first page address. At the address scramble step, address conversion is performed on an input address according to the address conversion table.
Abstract:
An object of the present invention is to provide a compound having a novel structure for overcoming the defects of conventional steroid agents and NSAIDs. It is found that the particular dihydroxy bodies of eicosapentaenoic acid and docosahexaenoic acid, which have not conventionally been known (11,18-dihydroxy eicosapentaenoic acid (11,18-diHEPE), 17,18-dihydroxy eicosapentaenoic acid (17,18-diHEPE) etc.), have activity of inhibiting neutrophil, thereby solving the object. The present invention unexpectedly remarkably inhibits infiltration into a tissue of, and activation of neutrophil found out at acute inflammation. The compound of the present invention is a compound which has not conventionally been known. Therefore, utility as a new therapeutic is provided.