Abstract:
An approach for providing secure communication services is disclosed. A secure (e.g., a Virtual Private Network (VPN)) tunnel from a source node over an access network, such as a satellite network, to a destination node, wherein the nodes are external to the network. A connection that supports a mechanism for enhancing performance of the network is established for a portion of the secure tunnel that traverses the network.
Abstract:
A communication system having a proxy architecture is disclosed. The system includes a platform that provides performance enhancing functions. The platform includes a spoofing apparatus that routes the information within the communication system. The spoofing apparatus receives spoofing selection and spoofing parameters from the platform and maintains the current parameters in one or more spoofing profiles. The spoofing apparatus routes packets of information throughout the communication system based on the spoofing selection and/or spoofing profile. The spoofing apparatus may also compensate for maximum segment size mismatches during the routing of information. This compensation may include dynamically resizing data segments or disabling three-way handshake spoofing. The above arrangement has particular applicability to a bandwidth constrained communication system, such as a satellite network.
Abstract:
An approach for supporting security in a communications network is disclosed. A network device includes a security peer that establishes a secure tunnel over a data network (e.g., satellite network) for transport of encrypted traffic. The device also includes a performance peer for establishing a connection supported by the secure tunnel. The performance peer includes a plurality of modules for providing respective performance enhancing functions to minimize performance impact of latency of the network.
Abstract:
A laser array and method of making same has precision fiducial marks that aid in the alignment of the laser array. The invention requires forming additional optical features adjacent to the laser array that is used to write fiducial marks on an opposite surface in the medium containing the laser array. Fiducial marks are formed when high intensity collimated beams of light are directed through the optical features onto a treated portion of the transparent medium. Fiducial accuracies of 1 micron are possible by using this approach.
Abstract:
An optical nanocomposite material has a nanoparticulate filler dispersed in a polymeric host photoresist material. According to the method of making the nanocomposite material, a predetermined temperature sensitive optical vector, such as refractive index, of the plastic host material and nanoparticulate filler are directionally opposed resulting in a nanocomposite material having significantly improved stability of the refractive index with respect to temperature.
Abstract:
A microlens array has a plurality of microlens supportedly arranged on a first surface of a transparent medium. At least two optical features are formed on a second surface opposite the first surface. Fiducial marks are formed on the second surface by a beam of collimated light directed onto the optical features and focused onto the second surface. Fiducial marks enable precise alignment of the microlenses in the microlens array.
Abstract:
An antireflection article of manufacture has host material and a nanoparticulate filler dispersed in the host material to form an optically modified material. The optically modified material is coated with a quarter wave coating to form an antireflection article having zero percent reflection.
Abstract:
A flexible induction heating coil comprising an elongated flexible core having proximal and distal ends. The core includes a plurality of core segments flexibly interconnected to make the core more flexible than the individual core segments. An elongated flexible inductor extends along the core.
Abstract:
A method and system for determining inroute frame timing for a Very Small Aperture Terminal (VSAT) includes receiving an appointment to transmit, on an inroute, at a start of a slot X of a frame number M; establishing, at a VSAT, an arrival time of a super frame numbering packet (SFNP) including a satellite ephemeris vector and a frame number N; calculating, at the VSAT, a timing offset (TRO) to be applied to the arrival time to compensate for a time varying gateway-satellite-terminal propagation delay (THS+TSR); setting a transmit instant as an end of the TRO after the arrival time; adding to the transmit instant a duration of X slots and a duration of (M−N) frames; and transmitting a burst, on the inroute from the VSAT, at the transmit instant. In the method, the calculating is based on computing THS+TSR from the satellite ephemeris vector, a gateway transmits the SFNP and receives the burst in the slot X within the frame number M of the inroute, and N is greater than or equal to M. A method and system for using ephemeris data for inroute timing is disclosed.
Abstract:
A method for controlling data traffic with random early detection and window size adjustments including performing random early detection on incoming data packets, calculating a simple moving average of packet dropping probabilities for the data packets as calculated when performing random early detection, decreasing an advertised window size if the simple moving average is greater than a probability target plus a tolerance factor, increasing the advertised window size if the simple moving average is less than the probability target minus a tolerance factor, and not adjusting the window size if the simple moving average is not greater than a probability target plus a tolerance factor and not less than a probability target minus a tolerance factor.