Abstract:
Techniques for accurate position location and tracking suitable for a wide range of facilities in variable environments are disclosed. In one aspect, a system for position location comprises a plurality of sensors (e.g. a network monitor, an environment sensor) for generating measurements of a plurality of sources, a plurality of objects or tags, each object generating measurements of the plurality of sources, and a processor for receiving the measurements and generating a position location for one or more objects in accordance with the received measurements. In another aspect, a position engine comprises a mapped space of a physical environment, and a processor for updating the mapped space in response to received measurements. The position engine may receive second measurements from an object within the physical environment, and generate a position location estimate for the object from the received second measurements and the mapped space.
Abstract:
A plug-in network appliance is disclosed. In one aspect, a network appliance performs a bridge between two wireless communication formats. In another aspect, a network appliance is deployed to perform position location services. In another aspect, a mesh network comprising one or more network appliances is deployed. A mesh network comprising one or more network appliances may be deployed to perform position location services. A plug-in form factor is described. A network appliance may convert power received from a plug in a first format to power in a second format for powering various components. A network appliance may connect with a wireless network and/or a network connected through a plug. A plug-in network appliance may connect to a weight-bearing outlet. Various other aspects are also presented.
Abstract:
An optical system for detecting and coupling light to optical devices, and a method for aligning and calibrating the system. The system includes positioning stages and fiber sensors. The fiber sensors are used to detect the positions of calibration pieces and other sensors in a variety of configurations. From these detected positions, any misalignment of the sensors or positioning stages may be calculated and corrected for. The fiber sensors calibrate the system.
Abstract:
A valve adapted for pooling blood components comprising a valve housing and a valve plug, with channels through the valve plug. By rotating the valve plug, selected ports in the valve housing may be brought into communication so that fluids may flow between the ports in communication. To facilitate transfusions of blood components, the valve may be used to pool multiple units of blood components and to resuspend masses of component particles, enabling them to be drawn out of the blood component bag. The risk of infection is decreased, and a more efficient use of the contents of the blood component bags is obtained. A method for producing a blood component pooling device is also disclosed.A containerized kit of the blood component pooling valve is provided which includes a rotary valve; a syringe adapted to be connected to the first port of the rotary valve; hoses, syringe fitting, hypodermic needle, and plastic bag needle to connect the other three ports to a capped vial of sterile saline solution, and a blood component pooling bag respectively; a sealed vial containing a sterile saline solution; a sterile blood component pooling bag; and a sterile sealed packet containing the kit elements.
Abstract:
A multiple saw assembly, for cutting small lumber components from longer lumber, having a pair of opposed saws, for forming component end angles, each mounted on a double pivot mounting to provide optimum saw engagement with lumber at various angles of cut. Lumber feed and hold down means provide uniform components for various widths of the components and various lengths of feed stock.
Abstract:
Techniques for accurate position location and tracking suitable for a wide range of facilities in variable environments are disclosed. In one aspect, a system for position location comprises a plurality of sensors (e.g. a network monitor, an environment sensor) for generating measurements of a plurality of sources, a plurality of objects or tags, each object generating measurements of the plurality of sources, and a processor for receiving the measurements and generating a position location for one or more objects in accordance with the received measurements. In another aspect, a position engine comprises a mapped space of a physical environment, and a processor for updating the mapped space in response to received measurements. The position engine may receive second measurements from an object within the physical environment, and generate a position location estimate for the object from the received second measurements and the mapped space.
Abstract:
This invention relates to a combustor liner for a gas turbine engine with means for loosely mounting one of the two spaced liner walls relative to the other to support it so that it "floats". The floating wall is made up of a plurality of segments to permit relatively minimal stress during thermal expansion, and the movement of each segment is restricted by at least one washer, and removal of the washer(s) permits the segment to be individually removed without removal of adjacent segments.
Abstract:
Techniques for accurate position location and tracking suitable for a wide range of facilities in variable environments are disclosed. In one aspect, a system for position location comprises a plurality of sensors (e.g. a network monitor, an environment sensor) for generating measurements of a plurality of sources, a plurality of objects or tags, each object generating measurements of the plurality of sources, and a processor for receiving the measurements and generating a position location for one or more objects in accordance with the received measurements. In another aspect, a position engine comprises a mapped space of a physical environment, and a processor for updating the mapped space in response to received measurements. The position engine may receive second measurements from an object within the physical environment, and generate a position location estimate for the object from the received second measurements and the mapped space.
Abstract:
Techniques for accurate position location and tracking suitable for a wide range of facilities in variable environments are disclosed. In one aspect, a system for position location comprises a plurality of sensors (e.g. a network monitor, an environment sensor) for generating measurements of a plurality of sources, a plurality of objects or tags, each object generating measurements of the plurality of sources, and a processor for receiving the measurements and generating a position location for one or more objects in accordance with the received measurements. In another aspect, a position engine comprises a mapped space of a physical environment, and a processor for updating the mapped space in response to received measurements. The position engine may receive second measurements from an object within the physical environment, and generate a position location estimate for the object from the received second measurements and the mapped space.