Abstract:
Multiple applications request data from multiple storage units over a computer network. The data is divided into segments and each segment is distributed randomly on one of several storage units, independent of the storage units on which other segments of the media data are stored. At least one additional copy of each segment also is distributed randomly over the storage units, such that each segment is stored on at least two storage units. This random distribution of multiple copies of segments of data improves both scalability and reliability. When an application requests a selected segment of data, the request is processed by the storage unit with the shortest queue of requests. Random fluctuations in the load applied by multiple applications on multiple storage units are balanced nearly equally over all of the storage units. This combination of techniques results in a system which can transfer multiple, independent high-bandwidth streams of data in a scalable manner in both directions between multiple applications and multiple storage units.
Abstract:
Method and apparatus for selecting samples for presentation on an output device, such as a display or speaker, from a sequence of stored media samples, such as audio or video information. Position information is received from a pointing device, such as a mouse, and translated into direction and magnitude information. A second sample is then retrieved based on this position and magnitude information. This method may be used to implement jog or shuttle controls for a media composer, which may be provided with simulated “inertia” for ease of use.
Abstract:
Multiple applications request data from multiple storage units over a computer network. The data is divided into segments and each segment is distributed randomly on one of several storage units, independent of the storage units on which other segments of the media data are stored. Redundancy information corresponding to each segment also is distributed randomly over the storage units. The redundancy information for a segment may be a copy of the segment, such that each segment is stored on at least two storage units. The redundancy information also may be based on two or more segments. This random distribution of segments of data and corresponding redundancy information improves both scalability and reliability. When a storage unit fails, its load is distributed evenly over to remaining storage units and its lost data may be recovered because of the redundancy information. When an application requests a selected segment of data, the request may be processed by the storage unit with the shortest queue of requests. Random fluctuations in the load applied by multiple applications on multiple storage units are balanced nearly equally over all of the storage units. Small data files also may be stored on storage units that combine small files into larger segments of data using a log structured file system. This combination of techniques results in a system which can transfer both multiple, independent high-bandwidth streams of data and small data files in a scalable manner in both directions between multiple applications and multiple storage units.
Abstract:
The application discloses a media processing method that includes accessing a compressed image data set representing a time series of different compressed video images. These video images have been compressed to differing degrees based on sizes of the compressed video images with a plurality of different quantization tables. The compressed image data set can then be decompressed to retrieve the time series of different video images, and this step of decompressing can be operative independent of information indicating a difference between quantization tables used to compress the images.
Abstract:
Media composer for editing source material. The media composer includes apparatus for receiving digitizing, storing and editing video and audio source material. Computing apparatus manipulates the stored source material and output apparatus communicates with the computing apparatus to display the manipulated material and control information. The computing apparatus includes JPEG compression techniques and is programmed to provide enhanced editing features.
Abstract:
Multiple applications request data from multiple storage units over a computer network. The data is divided into segments and each segment is distributed randomly on one of several storage units, independent of the storage units on which other segments of the media data are stored. Redundancy information corresponding to each segment also is distributed randomly over the storage units. The redundancy information for a segment may be a copy of the segment, such that each segment is stored on at least two storage units. The redundancy information also may be based on two or more segments. This random distribution of segments of data and corresponding redundancy information improves both scalability and reliability. When a storage unit fails, its load is distributed evenly over to remaining storage units and its lost data may be recovered because of the redundancy information. When an application requests a selected segment of data, the request may be processed by the storage unit with the shortest queue of requests. Random fluctuations in the load applied by multiple applications on multiple storage units are balanced nearly equally over all of the storage units. Small data files also may be stored on storage units that combine small files into larger segments of data using a log structured file system. This combination of techniques results in a system which can transfer both multiple, independent high-bandwidth streams of data and small data files in a scalable manner in both directions between multiple applications and multiple storage units.
Abstract:
The system processes sequences of digital still images to provide real-time digital video effects, and includes first and second channels for communicating first and second sequences of digital still images at a rate for simulating video. A controller directs still images to one of the first and second channels. A blender, having a first input connected to the first channel, a second input connected to the second channel, and an output, provides a combination of the first and second sequences of digital still images at a rate for simulating video.
Abstract:
The invention disclosed herein is a media recorder for recording live and prerecorded analog audio and/or video information. It is capable of receiving, digitizing, and storing analog audio and/or video information in real time. The invention detects discontinuities in the reception of the analog information and automatically terminates the storage of the information, so the previously received audio and/or video information is stored as a self-contained clip of digitized information. The invention is also capable of receiving and storing digital audio and/or video information from other sources, so that the system can play both the digital audio and/or video information digitized by it and that received from the other sources. This allows both the newly recorded and previously recorded media segments to be evaluated both individually and in context with other segments.
Abstract:
Porous polymer monoliths are made thermally responsive by functionalizing/grafting the pores with thermally responsive polymers and copolymers. Depending on the reaction conditions employed, the grafted polymer can either completely block flow through micrometer-sized pores in the monoliths or control the flow rate through the monoliths. The grafted monoliths are useful as thermal gates, thermal valves, and for isocratic hydrophobic interaction chromatography of proteins.
Abstract:
Creating a transition between a first sequence of video frames and a second sequence of video frames. The method includes storing a table of values that express a non-linear response to certain levels of light, generating a transition between the sequences, and adjusting the intensity at which material of the first sequence is displayed relative to the intensity at which material of the second sequence is displayed within the transition, based on the values stored in the step of storing.