Abstract:
In a radar sensor, a continuous microwave signal is passed through an RF switch which is periodically controlled by a pulse signal. The pulse signal is frequency modulated in such a way that the spectrum of the pulse signal is expanded without decorrelation occurring. Using this arrangement, the noise level is kept low and the detection range is increased.
Abstract:
The present invention is related a method and system for irradiating a target location or material with high-amplitude narrow pulses of electromagnetic (EM) energy at a periodic or quasi-periodic rate. The method and system comprises generating at least three electromagnetic signals simultaneously in space from at least three sources, each signal having the same repetition rate and a different frequency, and directing each signal to at least one predetermined target, and adjusting the phase of each signal, so that its peak field occurs at the same instant as the occurrence of the peak fields of all the signals at the target.
Abstract:
The phase continuous synthesizer and method generate a relatively wideband swept frequency signal with the use of a first generator for generating a first swept frequency signal, and a second generator successively switching between different frequency signals while creating undesired phase discontinuities during switching. A mixer is connected to the first and second generators for mixing the first swept frequency signal and the successively switched different frequency signals to produce the relatively wideband swept frequency signal, and a phase coasting unit is connected downstream of the mixer to reduce the undesired phase discontinuities created during switching in the relatively wideband swept frequency signal.
Abstract:
The present invention is related a method and system for irradiating a target location or material with high-amplitude narrow pulses of electromagnetic (EM) energy at a periodic or quasi-periodic rate. The method and system comprises generating at least three electromagnetic signals simultaneously in space from at least three sources, each signal having the same repetition rate and a different frequency, and directing each signal to at least one predetermined target, and adjusting the phase of each signal, so that its peak field occurs at the same instant as the occurrence of the peak fields of all the signals at the target.
Abstract:
An Ultra Wide Band (UWB) transmitting and receiving device that includes a Digital Signal Processor (DSP) for implementing a DC offset cancellation algorithm, an adder for adding a baseband transmission signal from the transmitter and a calibration signal produced by the algorithm of the DSP, a modulator for modulating the signal from the adder, a transmitter amplifier for amplifying the modulated signal, a coupler for applying the output of the transmitter to the receiver, and a switch for selectively connecting the output of the coupler to the input of the receiver.
Abstract:
An electronic warfare (EW) cross-eye system comprises two antennas separated a distance, d, a part, where d is much greater than the wavelength, λ, of a tracking signal emitted by a fire control radar (i.e., d>>λ). The EW cross-eye system further comprises a receive polarimeter for measuring the tracking signal and a second polarimeter for synthesizing the measured tracking signal to produce, for transmission, a jamming signal comprising a pair of inverted amplitude signals that are 180 degrees out of phase with each other.
Abstract:
A time-base generator with a self-compensating control loop. The time-base generator is suitable for use in level measurement and time-of-flight ranging systems. The time-base generator includes a pulse generator stage, a delay stage, a control loop and a references voltage module. The pulse generator generates a transmit pulse train and a receive or sampling pulse train with a delayed timing relationship. The control loop functions with the delay stage to maintain the desired delay between the first pulse train and the second pulse train. According to another aspect, the time-base generator includes a calibration module. The calibration module generates calibration pulses which are used by the controller in the level measurement system to calibrate operation.
Abstract:
A radar based application programmable waveform generator component of an apparatus generates a waveform and controls a phase and an amplitude of one or more parts of the waveform.
Abstract:
A power system for a phased-array radar system powers an antenna array with a single multiphase transformer. A plurality of AC/DC converters are connected in parallel between the single multiphase transformer and a common bus. The common bus is balanced with respect to chassis ground reducing noise and improving operating safety of the antenna. The AC/DC converters each has a multi-sloped characteristic which enables the converters to share power by modifying output impedance as a function of load without external control signals. The system also has several layers of fault detection.
Abstract translation:用于相控阵雷达系统的电力系统为具有单个多相变压器的天线阵列供电。 多个AC / DC转换器并联连接在单个多相变压器和公共总线之间。 公共总线在底盘减少噪声和提高天线的操作安全性方面是平衡的。 AC / DC转换器各自具有多倾斜特性,通过修改输出阻抗作为负载的函数,无需外部控制信号,能够使转换器共享功率。 该系统还具有多层故障检测功能。
Abstract:
Frequency dependent corrections are provided for quadrature imbalance. An operational procedure filters imbalance effects without prior calibration or equalization. Waveform generation can be adjusted/corrected in a synthetic aperture radar system (SAR), where a rolling phase shift is applied to the SAR's QDWS signal where it is demodulated in a receiver; unwanted energies, such as imbalance energy, are separated from a desired signal in Doppler; the separated energy is filtered from the receiver leaving the desired signal; and the separated energy in the receiver is measured to determine the degree of imbalance that is represented by it. Calibration methods can also be implemented into synthesis. The degree of quadrature imbalance can be used to determine calibration values that can then be provided as compensation for frequency dependent errors in components, such as the QDWS and SSB mixer, affecting quadrature signal quality.