摘要:
A component consolidated from a rapidly solidified aluminum-lithium alloy containing copper, magnesium and zirconium is subjected to a preliminary aging treatment at a temperature of about 400.degree. C. to 500.degree. C. for a time period of about 0.5 to 10 hours; quenched in a fluid bath; and subjected to a final aging treatment at a temperature of about 100.degree. C. to 250.degree. C. for a time period ranging up to about 40 hours. The component exhibits increased strength and elongation, and is especially suited for use in lightweight structural parts for land vehicles and aerospace applications.
摘要:
Disclosed is an aluminum base alloy suitable for forming into a wrought product having improved combinations of strength, corrosion resistance and fracture toughness. The alloy is comprised of 0.2 to 5.0 wt. % Li, 0.05 to 6.0 wt. % Mg, at least 2.45 wt. % Cu, 0.01 to 0.16 wt. % Zr, 0.05 to 12 wt. % Zn, 0.5 wt. % max. Fe, 0.5 wt. % max. Si, the balance aluminum and incidental impurities.
摘要:
Disclosed is a method of producing an unrecrystallized, thin gauge cold rolled aluminum-lithium sheet product having improved levels of strength and fracture toughness. The method comprises the steps of providing a body of a lithium containing aluminum base alloy, heating the body to a hot rolling temperature, and hot rolling the body to a first intermediate sheet product. After cold rolling to a second intermediate thickness, the sheet product is reheated and hot rolled to produce a final sheet product while avoiding substantial recrystallization there, the hot rolling adapted to relieve stored energy capable of initiating recrystallization during a subsequent heat treating step. Thereafter, the sheet product is solution heat treated, quenched and aged to provide a substantially unrecrystallized product having improved levels of strength and fracture toughness.
摘要:
A method of producing a recrystallized aluminum-lithium product having improved levels of strength and fracture toughness is disclosed. The method comprises the steps of: providing a lithium-containing aluminum base alloy comprised of 0.5 to 4.0 wt. % Li, 0 to 5.0 wt. % Cu, 0 to 5.0 wt. % Mg, 0.10 to 1.0 wt. % of a grain structure control element selected from the class consisting of Zr, Cr, Hf, Ti, V, Sc, and Mn, 0.5 wt. % max. Fe, and 5 wt. % max. Si, with the balance consisting essentially of aluminum and incidental elements and impurities; heating the body to a high presoak temperature to homogenize the alloy; cooling the alloy to a first hot working temperature; reheating the alloy, after hot working, back to a high annealing temperature; cooling the alloy to a second hot working temperature to produce a first product; reheating the alloy to a lower annealing temperature; and then cold working the alloy. The cold worked product is solution heat treated, quenched and aged to provide a substantially dual mode recrystallized sheet product having improved levels of strength and fracture toughness and further characterized by a fine grain structure adjacent the surface of the alloy product and a coarse grain structure in the interior thereof.
摘要:
Disclosed is a method of making aluminum base alloy flat rolled product substantially free of Luder's lines after stretching, the method comprising the steps of providing a body of a lithium-containing aluminum base alloy and working the body to produce a flat rolled product prior to solution heat treating and quenching. The flat rolled product is preaged for a time and temperature which does not substantially affect mechanical properties but which permits stretching the flat rolled product without formation of Luder's lines. Thereafter, the preage flat rolled product is stretched and aged to a condition having a substantially stable level of mechanical properties.
摘要:
A thermomechanical method for forging a precipitation-hardenable aluminum alloy workpiece comprises the steps of: (1) solution heat treating the workpiece to achieve a substantially homnogeneous supersaturated solid solution of the alloy throughout the workpiece; (2) partially aging the workpiece at a temperature sufficient to cause second-phase precipitate particles to form in the workpiece, the aging of the workpiece continuing until the precipitate particles acquire a size sufficient to restrict dislocation movement in the workpiece during subsequent forging without substantially hindering workability of the alloy; and (3) mechanically working the workpiece isothermally at the temperature at which aging of the workpiece occurred.
摘要:
A method for providing a toughening treatment for metallic material is herein described, which method is characterized in that the metallic material is subjected to a transformation super-plastic treatment by applying a mechanical load to said material while placing the same under a triangular-wave temperature cycle passing over a transformation point.
摘要:
The invention relates to products forged in aluminum based alloys with a very low hydrogen content. These products are endowed with an isotropic structure of equi-axial grains, which furnish mechanical features substantially equal in all directions and they have a particularly low critical hardening speed. They are obtained by heat treatment at a temperature slightly higher than the temperature of the solid state. They allow a substantial lightening of certain parts, particularly in aeronautic constructions and the application of hardening in boiling water or even in air without substantial reduction of the mechanical characteristics.
摘要:
WROUGHT ARTICLES OF AL-CU-MG ALLOY CONTAINING UP TO ABOUT 5% COPPER AND UP TO ABOUT 2% MAGNESIUM AS THE PRINCIPAL ALLOYING ELEMENTS BY WEIGHT, WITHIN LIMITS EFFECTIVE TO ACHIEVE SUBSTANTIALLY SINGLE PHASE STRUCTURE, AND EXHIBITING IMPROVED FRACTURE TOUGHNESS IN T8XX CONDITION; ALSO, RELATED PRACTICES AND IMPROVED ALLOY COMPOSITIONS FOR MAKING SUCH ARTICLES, INCLUDING PLATE.