Abstract:
A handpiece having a shell for removably housing a cartridge with a window having a light source and a cooling circuit thereof as well as a cover. A light guide connects the light source to the surface of the skin. The position of the cartridge is defined by a base having cartridge connection members and by a guiding surface having one end corresponding to the base and sides defining lateral guide rails around the position of the light guide. The cartridge is in the form of a planar housing having one end bearing a transverse assembly plate provided with connection members homologous to those of the base, and the sides include guiding ribs interacting with the lateral rails.
Abstract:
Disclosed is a skin treatment device for personal use. The device includes an optical radiation providing module operating in pulsed or continuous operation mode, a mechanism for continuously displacing the device across the skin, and a device displacement speed monitoring arrangement. When the device is applied to skin, the optical pulses repetition rate establishes the power of the optical radiation as a function of the device displacement speed. The device a hair removal mechanism configured to mechanically remove hair from the treated segment of the skin.
Abstract:
A device is described that can be used quickly and accurately by surgeons to provide uniform facial tissue planes that are tunnel-free and wall-free thus optimizing face lifting, tightening, and implant delivery. The device is comprised of a shaft with a substantially planar tip further comprised of relative protrusions and energized relative recession lysing segments. Forward motion of the device precisely divides and energizes various tissue planes causing contraction, especially via the fibrous tissues. Other forms of energy and matter can be delivered down the shaft to further enhance desirable tissue modification and contraction.
Abstract:
Apparatus for treating abnormal mucosa in an alimentary tract are provided. The apparatus include an ablation structure configured to be removably coupled to an endoscope and a deflection mechanism adapted to move the ablation structure with respect to the endoscope and toward a tissue surface.
Abstract:
A method of treating an annular fissure in an intervertebral disc includes providing a catheter having a distal end, a proximal end and a longitudinal axis, the distal end having an intradiscal section with at least one functional element, applying a force longitudinally to the proximal end of the catheter which is sufficient to advance the intradiscal section through the nucleus pulposus and around an inner wall of an annulus fibrosus, but which force is insufficient for the intradiscal section to puncture the annulus fibrosus, positioning the functional element at the selected location of the disc by advancing or retracting the catheter and optionally twisting the proximal end of the catheter, and using the functional element to treat the annular fissure.
Abstract:
Photodynamic bone stabilization systems are disclosed herein. In an embodiment, a photodynamic bone stabilization system includes a catheter having an elongated shaft with a proximal end adapter, a distal end releasably engaging an expandable portion, and a longitudinal axis therebetween; a light-conducting fiber configured to transmit light energy to the expandable portion; a light-sensitive liquid monomer comprising an initiator, wherein the initiator is activated when the light-conducting fiber transmits the light energy to initiate polymerization of the light-sensitive liquid monomer; and a cooling medium configured to control polymerization temperature, wherein the catheter comprises an inner void sufficiently designed to pass the light-sensitive liquid monomer into the expandable portion, and wherein the catheter comprises an inner lumen sufficiently designed to pass the light-conducting fiber into the expandable portion and configured to circulate the cooling medium.
Abstract:
A method and apparatus for treating abnormal mucosa in the esophagus is disclosed, such that the depth of the treated tissue is controlled. The depth of ablation is controlled by monitoring the tissue impedance and/or the tissue temperature. A desired ablation depth is also achieved by controlling the energy density or power density, and the amount of time required for energy delivery. A method and apparatus is disclosed for measuring an inner diameter of a body lumen, where a balloon is inflated inside the body lumen at a fixed pressure.
Abstract:
A probe operates in conjunction with an ablation system to prevent accidental injury of the esophagus during atrial ablation procedures. A distal portion of the probe is placed into the esophagus via the nasal cavity and positioned in the region of the esophagus that is in contact with the left atrium. Regulated cooling fluid with desired temperature and pressure continuously circulates from the external source of the related device into a sac of the probe. Temperature and pressure sensors are disposed within the sac of the probe to transmit data to the external related devices of this invention. The information from the sensors within the sac of the probe can provide a safety feature to control or stop the energy delivery from the ablation energy generator (i.e., radio frequency generator) and to prevent the advancement of the lesion formation that is created by the tip of the ablation catheter in the left atrium.
Abstract:
Disclosed is a system and method for treatment of skin disorders. More particularly, the disclosed invention is directed toward the reduction of acne and acne related bacteria using low-intensity light therapy. In an illustrative embodiment, skin containing acne bacteria is treated with a series of pulses of light from a light emitting diode. The LED has a dominant emissive wavelength of about 660 nm and an energy output of about 4 m W. The acne bacteria-containing tissue is exposed to pulses from the light source about 100 times for about 250 milliseconds per pulse, with an interpulse interval of about 100 milliseconds.
Abstract:
An optical depilation apparatus of high safety is provided, in which the light irradiating the skin during the depilation treatment can be prevented from leaking and entering the eyes, maintenance can be facilitated, and the light for depilation can be prevented from being emitted at an unintended time and entering the eyes. The apparatus for performing depilation by irradiating the skin with light includes: an apparatus body; a light source unit provided at the apparatus body and capable of emitting the light for irradiating the skin; a light shielding pipe having a skin contact surface at an end surface on the side opposite to the apparatus body in the axial direction of the light shielding pipe and is attached detachably to the apparatus body so as to surround a portion of the apparatus body which radiates light emitted from the light source unit; and a control circuit that disables the emission of light from the light source unit in a state in which the light shielding pipe is not attached to the apparatus body.