Abstract:
An audio encoding method and a related apparatus are disclosed. The audio coding method includes: performing a time-frequency transformation on a current frame of a time-domain audio signal, to obtain spectral coefficients of the current audio frame; obtaining one or more reference coding parameters of the current frame; and determining whether the reference coding parameters satisfy a set of parameter conditions. If any one of the parameter conditions is satisfied, the spectral coefficients of the current frame are encoded by using a transform coded excitation (TCX) algorithm. If none of the parameter conditions is satisfied, the spectral coefficients of the current audio frame are encoded using a high quality transform coding (HQ) algorithm. The audio encoding method and the related apparatus help improve encoding quality or encoding efficiency in audio signal encoding.
Abstract:
A method and device for decoding a signal. The method for decoding a signal includes: obtaining spectral coefficients of sub-bands from a received bitstream by means of decoding; classifying sub-bands in which the spectral coefficients are located into a sub-band with saturated bit allocation and a sub-band with unsaturated bit allocation; performing noise filling on a spectral coefficient that has not been obtained by means of decoding and is in the sub-band with unsaturated bit allocation, so as to restore the spectral coefficient that has not been obtained by means of decoding; and obtaining a frequency domain signal according to the spectral coefficients obtained by means of decoding and the restored spectral coefficient. Therefore, a sub-band with unsaturated bit allocation in a frequency domain signal may be obtained by classification, thereby improving signal decoding quality.
Abstract:
Present disclosure provide an encoding method and apparatus, which relate to the communications field and can perform proper quantization bit allocation for spectral coefficients of an audio signal, thereby improving quality of a signal obtained by a decoder by means of decoding. The method includes: after splitting spectral coefficients of a current data frame into subbands, acquiring quantized frequency envelope values of the subbands; modifying quantized frequency envelope values of subbands of a first quantity in the subbands; allocating quantization bits to the subbands according to modified quantized frequency envelope values of the subbands of the first quantity; quantizing a spectral coefficient of a subband to which a quantization bit is allocated in the subbands; and writing the quantized spectral coefficient of the subband to which a quantization bit is allocated into a bitstream.
Abstract:
The present invention provide a bandwidth extension method and apparatus. The method includes: acquiring a bandwidth extension parameter, where the bandwidth extension parameter includes one or more of the following parameters: a linear predictive coefficient (LPC), a line spectral frequency (LSF) parameter, a pitch period, a decoding rate, an adaptive codebook contribution, and an algebraic codebook contribution; and performing, according to the bandwidth extension parameter, bandwidth extension on a decoded low-frequency signal, to obtain a high frequency band signal. The high frequency band signal recovered by using the bandwidth extension method and apparatus in the embodiments of the present invention is close to an original high frequency band signal, and the quality is satisfactory.
Abstract:
An audio coding method and apparatus are disclosed, where the method includes: dividing an input audio signal into a low-band signal and a high-band signal; identifying types of the low-band signal and the high-band signal; adaptively allocating a total input rate of the audio signal to the low-band signal and the high-band signal according to different coding modes corresponding to the low-band signal and the high-band signal; and coding the low-band signal through a coding mode corresponding to the low-band signal according to the low-band rate, and coding the high-band signal through a coding mode corresponding to the high-band signal according to the high-band rate. In embodiments of the present application, when the low-band signal and the high-band signal are coded, coding rates are adaptively adjusted according to different types of the signals, thereby improving overall audio coding performance.
Abstract:
Embodiments of the present invention provide a signal classification method and device, and encoding and decoding methods and devices. The encoding method includes: dividing a current frame into a low-frequency band signal and a high-frequency band signal; attenuating the high-frequency band signal or a to-be-encoded characteristic parameter of the high-frequency band signal according to an energy attenuation value of the low-frequency band signal, where the energy attenuation value indicates energy attenuation of the low-frequency band signal caused by encoding of the low-frequency band signal; and encoding the attenuated high-frequency band signal or the attenuated to-be-encoded characteristic parameter of the high-frequency band signal. The technical solutions according to the embodiments of the present invention can improve the effect of combining the low-frequency band signal and the high-frequency band signal at the decoder.
Abstract:
A method and a device for encoding a high frequency signal, and a method and a device for decoding a high frequency signal are provided, which relate to encoding and decoding technology. The method for encoding a high frequency signal includes: determining a signal type of a high frequency signal of a current frame; smoothing and scaling time envelopes of the high frequency signal of the current frame and obtaining time envelopes of the high frequency signal of the current frame that require to be encoded, if the high frequency signal of the current frame is a non-transient signal and a high frequency signal of the previous frame is a transient signal; and quantizing and encoding the time envelopes of the high frequency signal of the current frame that require to be encoded, and frequency information and signal type information of the high frequency signal of the current frame.
Abstract:
A multi-channel signal encoding method includes determining a downmixed signal of a first channel signal and a second channel signal, determining an initial reverberation gain parameter of the first channel signal and the second channel signal, determining a target reverberation gain parameter of the first channel signal and the second channel signal based on a correlation between the first channel signal and the downmixed signal, a correlation between the second channel signal and the downmixed signal, and the initial reverberation gain parameter, quantizing the first channel signal and the second channel signal based on the downmixed signal and the target reverberation gain parameter, and writing a quantized first channel signal and a quantized second channel signal into a bitstream.
Abstract:
In a method to decode signals, a computing device decodes spectral coefficients of a current frame are grouped into a plurality of sub-bands. The computing device classifies a sub-band as a bit allocation unsaturated sub-band based on an average quantity of allocated bits per spectral coefficient of a sub-band of the plurality of sub-bands and a threshold. The computing device obtains a noise filling gain based on an envelope of the sub-band, and obtains a reconstructed spectral coefficient of the sub-band by performing noise filling based on the noise filling gain. The computing device then obtains a frequency domain audio signal based on spectral coefficients in the sub-band obtained by decoding and the reconstructed spectral coefficient.
Abstract:
A method for encoding an audio signal includes obtaining an ITD value of a current frame of an audio signal; obtaining a characteristic parameter of the current frame, wherein the characteristic parameter comprises at least one of a signal-to-noise ratio of the current frame or a peak feature of cross correlation coefficients of the current frame; determining, based on the characteristic parameter, whether to use the initial ITD value as the finalized ITD value of the current frame; and encoding the current frame based on the finalized ITD value of the current frame, wherein if the initial ITD value is determined as not used as the finalized ITD value of the current frame, the finalized ITD value of the current frame is the same as a finalized ITD value of a previous frame of the current frame.