Abstract:
Systems and methods of in-situ measuring the physical properties of an integrated computational element (ICE) device using surface acoustic wave (SAW) spectroscopy during fabrication are provided. The system includes a measurement device having a pump source providing an excitation pulse generating a SAW on the outer surface of the ICE. The system provides a probe radiation to be interacted with the outer surface of the ICE device and to form an interacted radiation, and an optical transducer configured to receive the interacted radiation and form a signal. An analyzer receives the signal from the optical transducer and determines a property of a material layer on the outer surface of the ICE device, and a second measurement device using at least one of optical monitoring, ellipsometry, and optical spectroscopy, is configured to measure a second property in the ICE device.
Abstract:
Systems and methods of engineering the optical properties of an optical Integrated Computational Element device using ion implantation during fabrication are provided. A system as disclosed herein includes a chamber, a material source contained within the chamber, an ion source configured to provide a high-energy ion beam, a substrate holder to support a multilayer stack of materials that form the Integrated Computational Element device, a measurement system, and a computational unit. The material source provides a material layer to the multilayer stack, and at least a portion of the ion beam is deposited in the material layer according to an optical value provided by the measurement system.