Abstract:
A method for performing materials analysis of an object using an X-ray system includes generating an X-ray beam using an X-ray source having an anode and acquiring a scatter spectrum from Compton scatter produced when the X-ray beam interacts with the object. The scatter spectrum is acquired using an energy resolving detector. A Compton profile is extracted from the scatter spectrum by processing the scatter spectrum using a control system of the X-ray system. The Compton profile includes peaks at characteristic lines of the anode. The method further includes identifying a characteristic of a material of the object using the Compton profile, and outputting an indication of the characteristic of the material.
Abstract:
System and method for XRD-based threat detection. An object is scanned with a first threat detection system. One or more alarm objects are identified. Data about the one or more alarm objects is passed from the first threat detection system to a second threat detection system and is used to move and/or to rotate the object in a predetermined ray path that decreases attenuation of scattered x-ray radiation. Also disclosed is a secondary collimator for XRD-based false alarm resolution in computed tomography {“CT”) threat detection systems. The secondary collimator comprises one or more slit apertures configured to provide a multi-angle capability that extends a range of momenta for which XRD intensities are measured for a predetermined range of photon intensities.
Abstract:
A method for assembling a secondary collimator including a first face plate having a first surface and an opposing second surface is provided. The method includes positioning a lamella assembly on the first face plate, wherein the lamella assembly includes at least one radiation-absorbing material layer and at least one radiation-transmitting material layer, such that a first surface of the lamella assembly is adjacent the second surface of the first face plate. The method also includes coupling a second face plate to the first face plate and the lamella assembly such that a first surface of the second face plate is adjacent a second surface of the lamella assembly.
Abstract:
Systems and methods for reducing a degradation effect on a signal are described. One of the methods includes pre-processing data based on a scan of a reference object and a scan of a substance. The reference object includes a material having an atomic number ranging from and including forty to sixty.
Abstract:
An X-ray diffraction imaging system is provided. The X-ray diffraction imaging system includes an X-ray source configured to emit an X-ray pencil beam and a scatter detector configured to receive scattered radiation having a scatter angle from the X-ray pencil beam. The scatter detector is located substantially in a plane and includes a plurality of detector strips. A first detector strip has a first width equal to a linear extent of the X-ray pencil beam measured at the plane in a direction parallel to the first width.
Abstract:
A method for assembling a secondary collimator including a first face plate having a first surface and an opposing second surface is provided. The method includes positioning a lamella assembly on the first face plate, wherein the lamella assembly includes at least one radiation-absorbing material layer and at least one radiation-transmitting material layer, such that a first surface of the lamella assembly is adjacent the second surface of the first face plate. The method also includes coupling a second face plate to the first face plate and the lamella assembly such that a first surface of the second face plate is adjacent a second surface of the lamella assembly.
Abstract:
A system for generating an improved diffraction profile is described. The system includes at least one x-ray source configured to generate x-rays and a primary collimator outputting a first x-ray beam to a first focus point and a second x-ray beam to a second focus point. The primary collimator generates the first and second x-ray beams from the x-rays. The system further includes a container, and a first scatter detector configured to detect a first set of scattered radiation generated upon intersection of the first x-ray beam with the container and to detect a second set of scattered radiation generated upon intersection of the second x-ray beam with the container. An angle of scatter of the first set of scattered radiation detected by the first scatter detector is at most half of an angle of scatter of the second set of scattered radiation detected by the first scatter detector.
Abstract:
A method for reducing an artifact within an image of a substance is described. The method includes generating the image of the substance, and constraining a measured linear attenuation coefficient of a pixel of the image based on at least one of a measured diffraction profile, a measured effective atomic number, and a measured packing fraction of the substance.
Abstract:
A system and methods for characterizing an unknown substance is described. One of the methods include determining an effective atomic number of the unknown substance as a first function of a first gradient of a first line.
Abstract:
A scanner includes a transmission detector, an x-ray source positioned to emit a beam of x-rays toward the transmission detector, and a scatter detector positioned to receive x-rays scattered from the beam of x-rays by an object. The scanner includes a computer programmed to receive data from the transmission detector and from the scatter detector, and determine a material composition of the object based on the data received from the transmission and scatter detectors.