Abstract:
A memory device may include a gate structure including a plurality of gate electrode layers and a plurality of insulating layers alternately stacked on a substrate, a plurality of etching stop layers, extending from the insulating layers respectively, being on respective lower portions of the gate electrode layers; and a plurality of contacts connected to the gate electrode layers above upper portions of the etching stop layers, respectively, wherein respective ones of the etching stop layers include an air gap therein.
Abstract:
A vertical memory device includes a substrate, gate lines, channels, contacts and contact spacers. The gate lines are stacked on top of each other on the substrate. The gate lines are spaced apart from each other in a vertical direction with respect to a top surface of the substrate. The gate lines include step portions that extend in a parallel direction with respect to the top surface of the substrate. The channels extend through the gate lines in the vertical direction. The contacts are on the step portions of the gate lines. The contact spacers are selectively formed along sidewalls of a portion of the contacts.
Abstract:
Semiconductor devices are provided. A semiconductor device includes a stack of alternating insulation layers and gate electrodes. The semiconductor device includes a channel material in a channel recess in the stack. The semiconductor device includes a charge storage structure on the channel material, in the channel recess. Moreover, the semiconductor device includes a gate insulation layer on the channel material. The gate insulation layer undercuts a portion of the channel material. Related methods of forming semiconductor devices are also provided.
Abstract:
A vertical memory device includes a plurality of gate electrodes at a plurality of levels, respectively, spaced apart from each other in a vertical direction substantially perpendicular to a top surface of a substrate, a channel extending in the vertical direction on the substrate and penetrating through the gate electrodes, and a plurality of contact plugs extending in the vertical direction and contacting the gate electrodes, respectively. At least one second contact plug is formed on a first gate electrode among the plurality of gate electrodes, and extends in the vertical direction.
Abstract:
A method of operating a memory system including memory cells commonly connected to a first signal line in a memory cell array includes; dividing the memory cells according to cell regions, and independently performing read operations on memory cells disposed in each cell region using a read reference selected from a plurality of read references and respectively corresponding to each cell region.
Abstract:
A method of operating a memory system including a non-volatile memory device and a memory controller controlling the non-volatile memory device, includes reading data from a memory cell array in a unit of a page which includes a plurality of sectors; performing error correction decoding on the read data in a unit of a sector of the page; selecting at least one target sector which includes at least one uncorrectable error and selecting at least one pass sector wherein all errors of the pass sector are correctable by the error correction decoding; inhibiting precharging of bit-lines connected to the at least one pass sector while precharging target bit lines connected to the at least one target sector; and performing a read retry operation for data in the at least one target sector.
Abstract:
A method is provided for operating a memory system. The method includes reading nonvolatile memory cells using a first soft read voltage, a voltage level difference between the first soft read voltage and a first hard read voltage being indicated by a first voltage value; and reading the nonvolatile memory cells using a second soft read voltage paired with the first soft read voltage, a voltage level difference between the second soft read voltage and the first hard read voltage being indicated by a second voltage value. The second voltage value is different than the first voltage value. Also, a difference between the first voltage value and the second voltage value corresponds to the degree of asymmetry of adjacent threshold voltage distributions among multiple threshold voltage distributions set for the nonvolatile memory cells of the memory system.
Abstract:
A method of operating a memory system including a non-volatile memory device and a memory controller controlling the non-volatile memory device, includes reading data from a memory cell array in a unit of a page which includes a plurality of sectors; performing error correction decoding on the read data in a unit of a sector of the page; selecting at least one target sector which includes at least one uncorrectable error and selecting at least one pass sector wherein all errors of the pass sector are correctable by the error correction decoding; inhibiting precharging of bit-lines connected to the at least one pass sector while precharging target bit lines connected to the at least one target sector; and performing a read retry operation for data in the at least one target sector.
Abstract:
A nonvolatile memory device comprises a memory cell array, a row selection circuit and a voltage generator. The memory cell array comprises a first dummy memory cell, a second dummy memory cell, and a NAND string comprising a plurality of memory cells coupled in series between a string selection transistor and a ground selection transistor through the first dummy memory cell and the second dummy memory cell. During a read-out operation mode, a dummy read-out voltage is applied to a first dummy wordline coupled to the first dummy memory cell, and to a second dummy wordline coupled to the second dummy memory cell. The dummy read-out voltage has a lower magnitude than a read-out voltage applied to an unselected memory cell during the read-out operation mode.
Abstract:
A method for operating a non-volatile memory device includes programming a memory cell and not programming a flag cell during first to nth (n is a natural number equal to or greater than 1) program loops, and programming the memory cell and the flag cell during (n+1)th to mth (m is a natural number greater than n) program loops.