Abstract:
A system and a method for imaging a scene of interest utilize variable exposure periods that have durations based upon detecting a fixed voltage drop in order to determine the scene segment radiance. The rate of voltage drop corresponds to the degree of scene segment radiance, such that high radiant scene segments yield faster voltage drops than lower radiant scene segments. The variable exposure period is determined within each pixel in a pixel array of the system to gather exposure periods from different segments of the scene being imaged. The measured exposure periods are translated into grayscale information that can be used to generate a composite image having various levels of grayscale that is representative of the imaged scene. Each pixel includes a photo sensor, an analog-to-digital converter and a memory to measure, digitize and store the exposure period. The memory contains a number of memory cells having a three-transistor configuration that are each connected to a bi-directional bit line. The bi-directional bit line functions as both a read bit line and a write bit line. The three-transistor configuration allows for non-destructive read-outs of data stored in the memory cells.
Abstract:
An imaging apparatus reduces the influence of the movement of hands and of the motion of an object on a high resolution picture image. Picture image light from the object passes through an optical system and light-transmitting domains of a color filter provided at the light incident side of an imaging device. The light-transmitting domains transmit only predetermined chromatic lights of the picture image light to input to corresponding photo-receiving domains of the imaging device. The imaging device is a two-picture element mixed reading type device. In a high resolution mode, an image forming point of the picture image light is moved to two places in parallel, and the picture image light is formed at each image forming point to image the picture image light. Then, the signal processing circuit combines the two original picture image signals whose image forming points during the imaging operation are different to generate a single output picture image signal. Thereby, an equivalent imaging time in imaging a single output picture image may be shortened.
Abstract:
A single-chip digital camera system is described. In one embodiment, the single-chip digital camera system includes a sensor array including rows and columns of discrete sensor elements, corresponding analog-to-digital converters to convert analog values into digital data, a storage element coupled to the analog-to-digital converters, to store the digital data, and a plurality of arithmetic logic units coupled to the storage element, to operate on the digital data. The digital camera system also includes a switching matrix Which is coupled between the array of analog-to-digital converters and the memory element. The switching matrix spatially rotates the analog-to-digital converter outputs for storing such outputs in the memory element.
Abstract:
An imaging apparatus and a method of capturing and storing an image in digital form within a photosensitive area of the apparatus include integrating an array of memory cells within each pixel of the photosensitive area. Preferably, the memory cells are dual port memory cells, such that write operations can be performed in a parallel manner while reading operations are performed in a serial manner. In the preferred embodiment, each array contains a sufficient number of memory cells to store two digital words representing a photo signal and a reference signal. A comparator within each pixel operating in unison with a counter and a ramp generator captures the photo signal and the reference signal in digital form. The design of the imaging apparatus allows each pixel in the photosensitive area to capture and store the signals in a parallel manner. The parallel function of the apparatus increases the electronic shutter speed, while the integrated memory array eliminates the need for an external frame buffer memory.
Abstract:
A pixel structure with an electronic shutter function using an active pixel sensor (APS) capable of overcoming a disadvantage of conventional pixel structures using the active pixel sensor that reset the pixels not in pixel units but in line units, and thus an electronic shutter cannot be provided, includes a plurality of pixels arrayed in a lattice pattern, a row selection decoder outputting a row selection signal to each pixel, a first line counter counting a number of lines of the pixels selected by the row selection decoder, a line reset selection decoder outputting a line reset signal to each pixel, a second line counter counting a number of lines of the pixel selected by the line reset selection decoder, a column reset selection decoder outputting a column reset signal to each pixel, a first pixel counter counting a number of the pixels selected by the column reset selection decoder, a pixel reading unit reading the pixels in pixel units, and a second pixel counter counting a number of the pixels which are read by the pixel reading unit.
Abstract:
A CCD converts an optical image of an object formed on its image sensing surface into electrical charges, and sequentially outputs the electrical charges of all of the light receiving pixels in one scanning operation in non-interlaced form. The outputs from the CCD are converted to the digital image signals by an analog-digital converter. A camera signal processing unit processes the digital image signals, thereby generating two streams of signals; one is digital video signals SV1 which are standard digital video signals in interlaced form, and the other is signals SV2 which are not outputted as the digital video signals SV1 out of the digital image signals of all of the light receiving pixels. These two streams of signals, SV1 and SV2, are processed differently depending upon a mode selected by a switch.
Abstract:
Look ahead shutter pointer used for exposure control determination. One shutter is used to remove the pixels from reset. This begins the integration process. The pixels are integrated by turning them on one by one and sampling their outputs sometime later. The amount of time between turning them on and sampling them can be varied. This can be done while the system is being used. In the preferred embodiment the time of exposure is changed at the interface between two frames to avoid problems in the image.
Abstract:
A charge transfer device and a method of driving the charge transfer device are arranged to enable electric charge to be correctly transferred in a short time after starting. An initialization voltage is applied at the time of starting and a portion having a higher impurity concentration is formed below a channel.
Abstract:
The present invention is a method for detecting photo signals using an imaging device, comprising steps of photo-generating holes in a well region 15 of a photo-diode by a signal light, transferring the photo-generated holes through a bulk of the well region 15 to a heavily doped buried layer 25 which is formed in the well region 15 near a source region 16 by doping that region with impurity heavier than the well region (15) of an insulated gate FET, storing the photo-generated holes in the heavily doped buried layer 25 to thereby change the threshold of the FET corresponding to the amount of the photo-generated charge, and reading the change in the threshold as the amount of signal light received by the photo-sensor.
Abstract:
In an image pickup apparatus comprising a CCD image pickup device made up of a plurality of photodiodes which are two-dimensionally arrayed, and vertical and horizontal shift registers, and a CPU for driving and controlling the CCD image pickup device, the CPU has a driving function in a mode for performing normal transfer of electric charges for reading in the vertical shift registers of the CCD image pickup device, and a driving function in a mode for performing high-speed sweep transfer to purge out useless electric charges, and sets the pulse width and cycle of vertical transfer pulses for driving the vertical shift register to be substantially the same in the above two modes.