Abstract:
Systems and methods for communication using hybrid signals are disclosed. In one aspect an apparatus for communication includes a processing system configured to encode a first set of information in a plurality of symbols and to encode a second set of information according to a spacing among the symbols. The apparatus may further comprise a transmitter configured to transmit to a device the symbols with the spacing among the symbols. In another aspect, an apparatus for communication includes a processing system configured to decode a first set of information from a plurality of symbols encoded with the first set of information or a second set of information from a spacing among the symbols by determining the spacing among the symbols. The apparatus may further comprise a receiver configured to receive the symbols via a wireless communication.
Abstract:
A method and apparatus for staggercasting includes encoding a first signal representing content having a time duration and a second signal also representing that content. A time delay period is specified for the time duration of the content. A composite signal, comprising the first and second encoded signals, is generated. In the composite signal the first encoded signal is delayed with respect to the second encoded signal by the time delay period for the time duration of the content. If an error is detected in the composite signal, then the received second encoded signal is decoded to produce the content, otherwise the delayed received first encoded signal is decoded to produce the content.
Abstract:
A transmitting system and a method of transmitting digital broadcast signal are disclosed. The method of transmitting digital broadcast signal includes generating signaling data including a transmission parameter, wherein the transmission parameter includes a protocol version field identifying between a first transmission mode and a second transmission mode, forming a data group including mobile service data and the signaling data, forming mobile service data packets including the mobile service data and the signaling data in the data group, transmitting the digital broadcast signal including the data group.
Abstract:
A digital broadcasting transmission and/or reception system having an improved reception performance and a signal-processing method thereof. A digital broadcasting transmitter comprises a TRS encoder for to TRS-encode an MPEG-2 transmission stream having null data for inserting an SRS data and a TRS parity at predetermined positions, randomizer to input and randomize data stream from the TRS encoder, a SRS exchanger to replace the null data for inserting the SRS data to the known data, and an encoder for encoding a data streams to which the Known data is inserted. Accordingly, the present invention detects the known data from a signal received from a reception side and uses the detected known data for synchronization and equalization and further uses the TRS parity for correcting error of the received signal, so that the digital broadcasting reception performance can be improved at poor multipath channels.
Abstract:
A signal acquisition system efficiently acquires a transmitted signal even at very low power. The system may synchronize to a preamble structure in the transmitted signal and, for example, determine timing parameters that locate the preamble with respect to system timing or other clock references. The system is particularly effective at acquiring weak power signals and is also robust against significant noise and other impairments, and therefore improves the ability of a receiving device that incorporates the signal acquisition system to acquire the signal and establish communication with other devices.
Abstract:
A digital broadcasting transmission and/or reception system having an improved reception performance and a signal-processing method thereof. A digital broadcasting transmitter comprises a TRS encoder for to TRS-encode an MPEG-2 transmission stream having null data for inserting an SRS data and a TRS parity at predetermined positions, randomizer to input and randomize data stream from the TRS encoder, a SRS exchanger to replace the null data for inserting the SRS data to the known data, and an encoder for encoding a data streams to which the Known data is inserted. Accordingly, the present invention detects the known data from a signal received from a reception side and uses the detected known data for synchronization and equalization and further uses the TRS parity for correcting error of the received signal, so that the digital broadcasting reception performance can be improved at poor multipath channels.
Abstract:
A receiver may be operable to receive a signal. A sequence estimation module of the receiver may generate estimated symbols corresponding to the received signal. The generating of the estimated symbols may use tap information associated with one or both of a pulse shaper via which the signal was transmitted and an input filter of the receiver. The sequence estimation module may generate a reconstructed signal based on the estimated symbols and the tap information. A feed forward equalizer (FFE) of the receiver may adapt a plurality of tap coefficients of the FFE based on the reconstructed signal. The signal may be equalized via the FFE. The adaptation of the tap coefficients of the FFE may be based on a least-mean-square (LMS) process for minimizing a mean square of the error signal. An output signal of the FFE may comprise a power gain compensation.
Abstract:
A digital broadcasting transmission and/or reception system having an improved reception performance and a signal-processing method thereof. A digital broadcasting transmitter comprises a TRS encoder for to TRS-encode a MPEG-2 transmission stream having null data for inserting a Known data and a TRS parity at predetermined positions, randomizer to input and randomize data stream from the TRS encoder, a null packet exchanger to replace the null data for inserting the Known data to the known data, and an encoder for encoding a data streams to which the Known data is inserted. Accordingly, the present invention detects the known data from a signal received from a reception side and uses the detected known data for synchronization and equalization and further uses the TRS parity for correcting error of the received signal, so that the digital broadcasting reception performance can be improved at poor multipath channels.
Abstract:
A receiver may receive a signal that was generated by passage of symbols through a non-linear circuit. An equalizer of the receiver may equalize the received signal based on a first non-linearity compensated, inter-symbol correlated (ISC) feedback signal to generate an equalized signal. The receiver may correct a phase error of the equalized signal to generate a phase-corrected equalized signal. The phase correction may be based on a second, non-linearity compensated, inter-symbol correlated (ISC) feedback signal.
Abstract:
Time synchronization between a control center and transmitters in a single frequency network is provided by generating and receiving a first reference time signal with a high time and frequency accuracy in a short and long time horizon and a second reference time signal supplied to the control center with a low time and frequency accuracy in the short time horizon and a high time and frequency accuracy in the long time horizon. A transport data stream is generated and supplied to the transmitters with a time-variable data rate through the control center corresponding to a frequency of the second reference time signal. Time displacement of the transport data stream received from the control center is performed by a respective transmitter until the data packets of the transport data stream each containing a transmission time are transmitted at a correct transmission time.