Abstract:
In one embodiment, a system is provided that includes: a mode-locked laser source configured to provide a pulsed multi-frequency laser output signal having spectrum with a plurality of comb lines, wherein one of the comb lines is a reference comb line, the comb lines forming a plurality of comb line pairs comprising the reference comb line and selected ones of the remaining comb lines; a plurality of optical-electronic (OE) conversion circuits, each OE circuit corresponding on a one-to-one basis to the plurality of comb line pairs, wherein each OE circuit is configured to provide an electrical output signal having a frequency corresponding to a heterodyning of the comb lines in its corresponding comb line pair; a plurality of amplifiers corresponding on a one-to-one basis with the OE conversion circuits, each amplifier configured to amplify a version of the electrical output signal from its corresponding OE conversion circuit so as to provide an amplified output signal; and an array of antennas corresponding on a one-to-one basis to the plurality of amplifiers, each antenna configured to transmit the amplified output signal from the corresponding amplifier, whereby the array of antennas transmits a coherent and multi-frequency signal output pulse.
Abstract:
In order to enable intermittent output of an oscillation signal without essentially producing a leak in response to a pulse signal indicating a transmission timing of a radar wave, a radar oscillator is provided which employs a configuration in which an operation of an oscillating unit itself is alternately changed between an oscillating state and an oscillation stop state by a switch, rather than a configuration in which an output passage of an oscillation signal is switched to be opened and closed as in a conventional radar oscillator.
Abstract:
A transmitting apparatus comprises a generator for generating a pulse signal having a waveform approximated to the Gaussian error function at a prescribed timing, a transmitter for power-amplifying a pulse signal generated by the generator, and transmitting the amplified pulse signal, an evaluator for extracting a pulse waveform part from the power-amplified pulse signal, comparing the extracted pulse waveform part with an ideal waveform so as to obtain an error amount between the pulse waveform part and the ideal waveform, and evaluating whether or not the error amount is within a prescribed error range, and a controller for causing the generator to subject the waveform of the pulse signal to correction in such a manner that the error amount becomes smaller each time an evaluation result of the evaluator is that the error amount is out of the prescribed error range.
Abstract:
A new method for transmitter-receiver design that enhances the desired signal output from the receiver while minimizing the total interference and noise output from the receiver at the desired decision making instant is presented. Further the new design scheme proposed here can be used for transmit signal energy and bandwidth tradeoff. As a result, transmit signal energy can be used to tradeoff for the “premium” signal bandwidth without sacrificing the system performance level in terms of the output Signal to Interference plus Noise power Ratio (SINR). The two designs—the one before and the one after the tradeoff—will result in two different transmitter-receiver pairs that have the same performance level. In many applications such as in telecommunications, since the available bandwidth is at premium, such a tradeoff will result in releasing otherwise unavailable bandwidth at the expense of additional signal energy. The bandwidth so released can be used for other applications or to add additional telecommunication capacity to the system.
Abstract:
The portion corresponding to a main bang signal leaking from a transmission/reception switching unit is extracted as a frequency estimation signal from an IF signal from a mixer in a signal extracting unit, a frequency is estimated in a frequency estimating unit, and the frequency of a local oscillation signal of a local oscillator is controlled so that the frequency of the IF signal is equal to a target value. The frequency estimation in the frequency estimating unit is carried out by using Discrete Fourier Transform or Fast Fourier Transform.
Abstract:
An illumination source of predominantly non-directional and incoherent millimeter-wave radiation for illuminating an area for passive millimeter-wave imaging comprises a container with at least a partly reflective internal surface and a plurality of exit apertures and a primary source of millimeter-wave radiation for emitting millimeter-wave radiation into the container. The primary source and the container are arranged so that a proportion of the millimeter-wave radiation emitted by the source undergoes reflection within the container before being emitted through the apertures, such that the different paths lengths are at least equal to the coherence length of the radiation. This is facilitated if the bandwidth of the radiation is preferably at least 1 GHz. The container may be a box in which a waveguide is used to couple radiation from the primary source into the box. Alternatively, the container may be formed from a mesh and the plurality of holes is provided by the holes in the mesh.
Abstract:
In a radar sensor, a continuous microwave signal is passed through an RF switch which is periodically controlled by a pulse signal. The pulse signal is frequency modulated in such a way that the spectrum of the pulse signal is expanded without decorrelation occurring. Using this arrangement, the noise level is kept low and the detection range is increased.
Abstract:
An improved millimetre wave illumination system includes at least one primary source of millimetre wave radiation, a reflecting surface and a baffle comprising a plurality of exit apertures arranged such that at least some of the radiation from the source is reflected from the reflective surface before proceeding to the baffle, characterised in that means are incorporated for generating a plurality of radiation field states within a pre-determined time interval. The baffle, source and reflector are preferably packaged into a container with the exit apertures providing an illumination output. The generation of the plurality of radiation field states provides an illumination at the illuminator output that is less spatially variable when integrated over the pre-determined time interval. Embodiments of the invention show means for generating the plurality of radiation field states including relative movement of the reflective surface, variable positioning of the source with respect to the reflective surface, and including multiple sources within a single system.
Abstract:
A time domain communications system wherein a broadband of time-spaced signals, essentially monocycle-like signals, are derived from applying stepped-in-amplitude signals to a broadband antenna, in this case, a reverse bicone antenna. When received, the thus transmitted signals are multiplied by a D.C. replica of each transmitted signal, and thereafter, they are, successively, short time and long time integrated to achieve detection.
Abstract:
A radar device is described having an arrangement to generate a carrier signal having a carrier frequency fT, an arrangement to generate pulses having a pulse repetition rate fPW, an arrangement to split the carrier signal between a transmission branch and a reception branch, an arrangement to delay the pulses, an arrangement to mix the carrier signal in the reception branch with a reception signal, and an arrangement to integrate the mixed signal. An arrangement to modulate the carrier signal in the transmission branch with the delayed pulses and an arrangement to alter the delay in the pulses according to a predetermined code are also provided. A method of suppressing interference with the functioning of a radar device is also described.
Abstract translation:描述了具有生成具有载波频率f T T T的载波信号的装置的雷达装置,用于产生具有脉冲重复率f PW的脉冲的装置, 在传输分支和接收分支之间分离载波信号,延迟脉冲的布置,将接收分支中的载波信号与接收信号进行混合的装置,以及对混合信号进行积分的装置。 还提供了用延迟脉冲调制传输分支中的载波信号的装置,以及根据预定代码改变脉冲延迟的装置。 还描述了抑制对雷达装置的功能的干扰的方法。