Abstract:
The present invention provides a display apparatus, comprising: an a light source for emitting illumination light for transmitting along illumination light path; a display device includes a plurality of pixels for modulating the illumination light for reflecting the illumination light along a projection light path after said illumination light is modulated by said display device; light path change actuator for changing the projection light paths; and a control circuit for controlling the light source, wherein the control circuit controls the light source in response to changes of the projection light path.
Abstract:
A micromirror device, which makes an image display with digital image data, comprises pixel elements each of which makes pulse width modulation for incident light depending on the deflection state of light and which are arranged in the form of a matrix. Each of the pixel elements has a mirror, and at least one memory cell comprising a transistor and a capacitor. In such a micromirror device, the total value of the propagation delay time of a ROW line, which connects all of transistors of memory cells arranged successively in a ROW direction, and the switching time of each transistor is smaller than the driving interval of the ROW line driven in the minimum display duration of the micromirror device.
Abstract:
A micromirror device comprises a plurality of mirrors arranged on a substrate, an elastic hinge for supporting each mirror to be deflectable, an address electrode having first and second regions arranged across the deflection axis of each mirror, a driving circuit for controlling a deflection of the mirror, and a stopper provided in a position of making contact with the mirror in a deflected state of the mirror. When the mirror makes contact with the stopper, the potential of the mirror or the stopper changes.
Abstract:
A display system includes a light source for projecting a linearly polarized illumination light. The display system further includes a deflectable mirror device having a plurality of mirror pixels. The display system further includes a polarized light separation plane that separates reflected light from the illumination light, a wave plate disposed near the deflectable mirror device, and a projection lens that projects the reflected light from the deflectable mirror device. In this system, the optical axes of the illumination light and an ON reflected light reflected from the deflectable mirror device are substantially perpendicular to the deflectable mirror device, and the optical axis of an OFF reflected light is inclined to the optical axis of the image display projection light path.
Abstract:
A spatial light modulator supported on a device substrate includes a plurality of light modulation elements to modulate a light emitted from a light source. The spatial light modulator and the device substrate further comprises a cyclic structure on a surface of the spatial light modulator and/or the device substrate for preventing a reflection of the incident light from the cyclic structure. In an exemplary embodiment the cyclic structure includes cyclic structural elements having a distance between two cyclic elements shorter than the wavelength of an incident light for preventing a reflection of the incident light from the cyclic structure,
Abstract:
An image display device, which uses a spatial light modulator (SLM), comprises a deflective modulation element, which is provided in the SLM, for deflecting illuminating light depending on the deflection state of the element itself, a data converting unit for converting at least N consecutive bits of binary data according to an image signal into non-binary data, and a controlling unit for controlling the deflective modulation element with the non-binary data.
Abstract:
Additional control flexibilities to generate more gray scales for an image display system is achieved by controlling the intensity distribution of the light projection from a light source to a deflecting mirror to further coordinate with the control of the intermediate states of the deflecting mirror. The control light source intensity distribution can provide incident light with wide varieties of intensity distributions including non-uniform, symmetrical and non-symmetrical, different distributions of polarizations, various cross sectional shapes of the incident lights and other combinations of all of the above variations. More stable and better control of gray scale control is also achieved by optimizing the intensity distributions of the incident light to produce the best visual effects of the image display.
Abstract:
An imaging device for receiving a radio signal output from an RF tag attached to a subject to acquire identification information of the subject, includes: an imaging unit for continuously imaging a plurality of subjects to acquire a moving image; a radio receiver for receiving a plurality of radio signals respectively output from RF tags attached to the subjects to acquire a plurality of units of subject identification information respectively indicated by the radio signals, the subject identification information identifying a corresponding subject, the radio receiver moving together with the imaging unit and having directivity in a direction approximately the same as an imaging direction of the imaging unit; a moving amount calculation unit for calculating a moving amount of the radio receiver based on the acquired moving image; and a subject direction specifying unit for specifying directions of the subjects respectively identified by the plurality of units of subject identification information based on changes in field intensities of the radio signals, the changes corresponding to the moving amount of the radio receiver.
Abstract:
The present invention provides: a specific water-soluble polymer exhibiting a high calcium-ion-scavenging function and further exhibiting a high clay-dispersing function even in high-hardness water; a detergent composition comprising the water-soluble polymer; and uses, other than the detergent composition, by making the best use of the characteristics of the water-soluble polymer. The specific water-soluble polymer, according to the present invention, has a calcium ion scavengeability of not less than 0.40 and further has a clay dispersibility of not less than 0.50 in high-hardness water and, preferably, includes polymers A and B as essential components wherein the polymer A has a calcium ion scavengeability of not less than 0.45 and wherein the polymer B has a clay dispersibility of not less than 0.65 in high-hardness water. The detergent composition comprising this water-soluble polymer has a good detergency even in high-hardness water.
Abstract:
The present invention provides a head-mounted picture display device including a picture display system, a housing body, left and right supporting frames, and joint members. The picture display system includes picture display elements for producing pictures represented by a supplied video signal, and prisms for introducing beams transmitting the pictures produced by the picture display elements to the observer's eyes. The housing body accommodates the picture display system while the left and right supporting frames are adapted to be worn are on the observer's left and right ears for supporting the housing body in an observable position. The joint members link the housing body and the left and right supporting frames.