Abstract:
An improved raster scanner, and electrostatographic printing machines which use such scanners, in which facet tracking is achieved by incorporating a semiconductor laser having an electronically tunable wavelength and a wavelength dispersive element which directs the laser beam onto the facets of a rotating polygon. The wavelength dispersive element is positioned, and the wavelength output from the laser is adjusted, such that as the polygon rotates the laser beam produces a spot on a facet which tracks the facet.
Abstract:
An image is accurately recorded by a light beam on a PS plate wound on a drum which is rotating at a constant speed. A rotary encoder detects information of a recording position in a main scanning direction by the light beam that is emitted from an optical unit to the PS plate. Based on the detected information, a PLL circuit of a recording synchronizing signal generating unit generates an original clock. Pulses of the original clock are counted by a decimating counter, which outputs a decimating instruction to decimate a pulse from the original clock each time the count reaches a preset count. Based on the decimating instruction, a pulse is decimated from the original clock, and a decimated clock is frequency-divided at a fixed frequency-dividing ratio by a frequency divider, which outputs a pixel clock for recording the image. Since the frequency of the pixel clock is varied by decimating the original clock based on the preset count, the image can accurately be recorded on the PS plate by determining in advance the preset count depending on the positional relationship between the PS plate and the optical unit.
Abstract:
A flying spot scanning system is provided by utilizing reflected light from a multifaceted rotating polygon which is then directed to the scanned medium. A light source illuminates at least one of the facets of the polygon during each scanning cycle to provide the spot scan. In each scanning cycle, information is transmitted to scanned medium by modulating the light from the light source in accordance with a video signal. To assure a uniform spot size at the scanned medium, an optical convolution of elements is selected in combination with the light source such that an adequate depth of focus at the medium is assured. An imaging lens is provided in series with a lens, which expands an original light beam, to converge the expanded beam to illuminate the selected facet or contiguous facets that are to control the movement of a spot throughout a scan angle. In the preferred embodiment, the rotation of the polygon is synchronized in phased relation to the scan rate used to obtain the video signal.
Abstract:
In a multiplied pulse generation device, a detection signal is outputted every time a driven object is driven by a specific amount. An actual cycle indicating a time interval between the detection signal and a previous detection signal is measured. An estimated cycle is estimated based on at least past two actual cycles including the actual cycle measured. A multiplied pulse is sequentially generated in such a manner that a multiplied cycle indicating a time interval per which the multiplied pulse is generated is sequentially changed according to an amount of change from the actual cycle to the estimated cycle.
Abstract:
An optical scanner is provided having a memory device thereon. The memory device may store operational characteristics of the optical scanner or data that characterizes laser beam scan path and/or laser power requirements by each laser of the optical scanner. The memory device may be used to store historical information such as device temperature, cycles of operation and other historical information of components within a corresponding electrophotographic device. Still further, the electrophotographic device to which the optical scanner is installed may write operational data to the memory device, for example, to store a backup of registration and other operational parameters that are typically stored by the controller of the electrophotographic device.
Abstract:
The present invention is made to provide a fixing structure for solid state image forming device made inexpensively and easily by simple caulking adhering method with keeping high positional accuracy, by which it is achieved that the solid state image forming device can be separated easily from the image focusing lens holding member when the image focusing lens holding member has a defect. In the fixing structure of present invention, an image focusing lens holding member 3 and an intermediate holding member 6 are adhered by caulking adhering method. Because one or more projecting portion 3c for painting adhesive material formed on the image focusing lens holding member 3, have smaller area than that of bottom surface 6a of the intermediate holding member 6, a space 10 is formed between the image focusing lens holding member 3 and the intermediate holding member 6, the solid state image forming device 1 fixed on the intermediate holding member 6 can be easily separated from the image focusing lens holding member 3 by inserting and turning a tool 11 whose width of top portion is smaller than the width of space 10.
Abstract:
An image forming apparatus includes: a latent image carrier that includes an effective image region which has a predetermined width along a main scanning direction; a latent image forming unit that has a structure in which a deflection mirror surface makes a light beam scan in a second scan region which is wider than a first scan region which corresponds to the effective image region, that modulates the light beam in accordance with an image signal within the range of the first scan region for every scanning cycle, and that guides the modulated light beam onto the effective image region, thereby forming a line latent image which corresponds to the image signal; an optical sensor that detects a scanning light beam, which moves outside the first scan region within the second scan region, to output a signal; and a write timing adjuster that controls the timing of start modulating the light beam and accordingly adjusts a write start position for start writing a latent image along the main scanning direction, based on a time difference between a first detection signal, which the optical sensor outputs as a first light beam scanning away from the effective image region moves passed the optical sensor, and a second detection signal, which the optical sensor outputs after outputting the first detection signal when a second light beam scanning toward the effective image region moves passed the optical sensor.
Abstract:
An optical scanning device includes a scanning optical system scans an image surface in a main scanning direction by focusing a deflected light beam onto the image surface as a beam spot, the scanning optical system providing an amount of linearity at an outer peripheral end of the image surface. An optical writing unit controls ON/OFF state of a light source in accordance with an image signal. A frequency dividing unit generates a secondary frequency of a pixel clock, which is equal to an initial frequency of the pixel clock divided by an integer. An electrical correction unit adjusts the secondary frequency of the pixel clock with respect to each of respective pixels included in the image signal, when the beam spot is located near the outer peripheral end of the image surface, so as to obtain uniform-velocity characteristics.
Abstract:
Disclosed is an information reading/printing apparatus in which a carriage supports and moves a printing unit for printing information on a printing medium and a reading unit for reading information. The position of the carriage moved in each of left-to-right and right-to-left directions is detected.
Abstract:
An optical scanner is provided having a memory device thereon. The memory device may store operational characteristics of the optical scanner or data that characterizes laser beam scan path and/or laser power requirements by each laser of the optical scanner. The memory device may be used to store historical information such as device temperature, cycles of operation and other historical information of components within a corresponding electrophotographic device. Still further, the electrophotographic device to which the optical scanner is installed may write operational data to the memory device, for example, to store a backup of registration and other operational parameters that are typically stored by the controller of the electrophotographic device.