摘要:
A diffractive optical element includes a plurality of layered diffraction gratings which includes two diffraction gratings made of materials having different dispersive powers. The plurality of diffraction gratings includes a first diffraction grating having a plurality of grating portions provided on a first base surface, and a second diffraction grating having a plurality of grating portions which are provided on a second base surface. In the second diffraction grating, a height of the grating portion of the central circular zone from the second base surface is greater than a height of the grating portion of the peripheral circular zone from the second base surface.
摘要:
A diffractive optical element includes a plurality of diffraction gratings. A diffraction grating within the plurality of diffraction gratings includes a plurality of grating parts having a curved grating surface and grating tips which connect to define a curved envelope face. The grating surface has a radius of curvature larger than a radius of curvature of the envelope face. In addition, two diffraction gratings within the plurality of diffraction gratings are composed of different materials having different dispersions. Therefore, even when the radius of curvature of the envelope face is small, the degradation of the diffraction efficiency is suppressed.
摘要:
An optical lens includes a hologram, a refractive lens, and a phase level difference. The hologram has a sawtooth shape grating having a sawtooth shape in cross-section, and generates +2nd-order diffracted light most strongly with respect to blue light and +1st-order diffracted light most strongly with respect to red light, by setting a height of the sawtooth shape grating. The +2nd-order diffracted light of blue light is condensed through a substrate with a thickness t1, and the +1st-diffracted light of red light is condensed through a substrate with a thickness t2 (t1
摘要:
There is provided a diffractive element including a first member 2, which includes a first resin 2a and has a predetermined refractive index, and a second member 3, which has the same refractive index as the first member 2 having the predetermined refractive index in one wavelength of light and has a refractive index different from the first member 2 having the predetermined refractive index in the other wavelength of light. The first member 2 and the second member 3 are alternately arranged within an incidence plane of the two wavelengths of light, thereby constituting a diffraction grating. The second member 3 includes a second resin 3a to dissolve an organic matter 5 having optical absorption in a predetermined wavelength range at a molecular level, whereby the refractive index of the second member 3 is formed.
摘要:
The invention relates to an apparatus for shaping a light beam, having at least two optically functional boundary surfaces that are arranged one behind another in the propagation direction (z) of the light beam to be shaped, such that the light beam can pass through the at least two optically functional boundary surfaces one after another, and two groups of refractive or diffractive imaging elements that are arranged on at least one of the optically functional boundary surfaces, at least two of the imaging elements having different properties within at least one of the groups.
摘要:
The present invention proposes a novel principle of blazing that is effective even in the resonance domain. In the invention, light (51) is made incident on a diffraction grating so that specular resonance can occur in two or more light scattering units including, for example, bispheres (11a, 21a; 12a, 22a), and by the specular resonance, a fraction of diffracted light 52 that is diffracted by the first layer (1) and the second layer (2) is selectively enhanced. According to the invention, it also becomes possible to tune a blazing condition by a control signal from outside.
摘要:
There is provided an optical system using diffraction optical elements (DOEs) for improving chromatic aberration correction performance by arranging two DOEs between planes adjacent to a lens having plus refractive power and a lens having minus refractive power. The optical system has an aperture stop for controlling light amount, a first lens group, a second lens group, and a third lens group, which are sequentially arranged from an object side. The first lens group includes a first lens having plus refractive power and a second lens having minus refractive power arranged sequentially from the object side. The second or third lens group has a lens where at least one refraction surface is aspherical. In the optical system using DOEs (diffraction optical elements), a first DOE is joined to an image side of the first lens and a second DOE is joined to an object side of the second lens in correspondence to the first diffraction optical element.
摘要:
An optical system including a light source that generates light, a mirror changing an optical path of the light generated by the light source and an aberration correcting element that corrects aberrations generated in the light reflected from the mirror due to an error in the surface shape of the mirror.
摘要:
An optical system includes a diffractive optical element and a refractive optical element. The diffractive optical element corrects a chromatic aberration flare component of wavelengths other than a predetermined wavelength (a design wavelength) remaining in the refractive optical element by means of an aspherical component given by the grating pitch of a diffraction grating included in a diffractive portion of the diffractive optical element. In addition, a refractive portion of the diffractive optical element is adapted to correct an aberration component as a composite of the aberration component of the design standard wavelength shifted by the correction and the aberration component of the design standard wavelength of the refractive optical element.
摘要:
A first diffractive optical element pattern with a pattern pitch that is no greater than a wavelength of incident light is formed on a first main surface of substrate such as a glass plate. Second diffractive optical element patterns are formed at positions that are respectively incident to positive first-order diffracted light and negative first-order diffracted light produced by the first diffractive optical element pattern. Negative first-order diffracted light produced by each second diffractive optical element pattern is incident upon a boundary face of the substrate at an angle that is smaller than the critical angle, and so exits the substrate.