Abstract:
The present disclosure relates to a communication technique that fuses a 5G communication system for supporting a higher data transmission rate than a 4G system with IoT technology, and a system therefor. The present disclosure may be applied to an intelligent service (for example, smart home, a smart building, a smart city, a smart car or connected car, health care, digital education retail, a security and safety related service, etc.) on the basis of 5G communication technology and IoT related technology. The present invention provides a resource allocation and PRB bundling method suitable for uplink sub-band precoding such that the uplink sub-band precoding is efficiently performed without a large increase in an uplink related downlink control information payload.
Abstract:
A channel transmission/reception method and an apparatus for transmitting/receiving channels between a base station and a mobile terminal efficiently in a mobile communication supporting massive Multiple Input Multiple Output (MIMO) transmission are provided. The method includes determining a resource to which a Demodulation Reference Signal (DMRS) addressed to a terminal is mapped within a resource block, the DMRS resource being positioned in at least one of a first resource set capable of being allocated for DMRS and a second resource set symmetric with the first resource set on a time axis, and transmitting the DMRS and DMRS allocation information to the terminal.
Abstract:
The present disclosure relates to a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and a system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety related services, and the like) on the basis of 5G communication technology and IoT-related technology. The present invention provides a method for constituting the corresponding information, in a situation that a specific type service influences (interference in a wireless communication environment) on other types of services or the same type of service, into control information so as to transfer the control information from a base station to a terminal. The terminal receives the information through a control channel and can adapt a data reception method by utilizing the same.
Abstract:
The present invention relates to a communication technique for convergence of an IoT technology and a 5G communication system for supporting a higher data transmission rate beyond a 4G system, and a system therefor. The present disclosure can be applied to an intelligent service (for example, a smart home, a smart building, a smart city, a smart car or connected car, health care, digital education, retail business, security and safety-related service, etc.) on the basis of a 5G communication technology and an IoT-related technology. A method for communicating by a base station according to the present invention comprises transmitting control information relating to at least two services to a terminal; and transmitting data relating to the at least two services to the terminal, wherein at least one of a control region for transmitting the control information and a data region for transmitting the data may include at least two frequency bandwidths corresponding to each of the at least two services.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present invention presents a method for efficiently estimating a physical channel and, according to the present invention, a terminal of a communication system receives a synchronization signal from a base station, receives a broadcast channel from the base station, and can estimate the broadcast channel on the basis of the synchronization signal.
Abstract:
A method and an apparatus for transmitting/receiving channel state information for use in multi-antenna system are provided. A signal communication method of a base station having a plurality of antennas in a wireless communication system includes determining antenna ports of first and second directions based on directions of the plurality of antennas, allocating channel measurement resources for the respective antenna ports to a terminal, transmitting a feedback configuration to the terminal according to the channel measurement resources, and receiving feedback information from the terminal based on the channel measurement resource and the feedback configuration. The signal transmission/reception method and apparatus are advantageous in transmitting/receiving channel state information efficiently in the system using a plurality of antennas.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present invention is a method by which a base station transmits a signal in a wireless communication system for efficiently performing an initial access procedure of a terminal, the method comprising the steps of: generating the synchronization signal on a basis of subcarrier spacing used in the synchronization signal; and transmitting the synchronization signal to the terminal.
Abstract:
A data transmission method and an apparatus in a network supporting coordinated multipoint transmission are provided. The method includes transmitting candidate sets of initial state information used to generate Demodulation Reference Signal (DMRS) scrambling sequences for the transmission points to the UE, and transmitting an indication corresponding to at least one candidate set of initial state information respectively associated with at least one transmission point to the UE, wherein the initial state information is used by the UE to generate DMRS scrambling sequences.
Abstract:
An apparatus and method are provided for transmitting and receiving signals in a wireless communication system. A method includes transmitting a first signal using a first frame structure to a first terminal; and transmitting a second signal using a second frame structure to a second terminal. A subcarrier spacing of the second frame structure is a multiple of a subcarrier spacing of the first frame structure. A length of a subframe in the first frame structure is a multiple of a length of a subframe in the second frame structure.
Abstract:
A method and apparatus for feedback in a mobile communication system are provided. The method of feedback transmission for a user equipment (UE) in a wireless communication system includes receiving control information indicating whether a subframe of an uplink band is allocated for a downlink from a base station (BS), receiving data from the BS in at least three subframes according to the control information, and sending the BS feedback for the data received in the at least three subframes using transmission time interval (TTI) bundling.