Abstract:
A method and apparatus for wireless communication stores synchronization channel (SCH) timing for each identified Global System for Mobile Communications (GSM) cell. The stored SCH timing is used to perform base station identity code (BSIC) reconfirmation for an identified GSM cell without frequency correction channel (FCCH) tone detection and initial BSIC confirmation. The stored SCH timing is maintained across a plurality of user equipment (UE) states.
Abstract:
A user equipment (UE) reduces delays during cell reselection for a circuit switched call back (CSFB) voice call in a radio access technology (RAT). In one instance, the UE prevents cell reselection from a first cell of a RAT to a second cell of the same RAT during system information collection of the first cell. In some instances, the preventing is based on a signal strength of the first cell or a signal strength difference between the first cell and the second cell.
Abstract:
A method and apparatus for improved downlink data transport with hybrid automatic repeat request (HARQ) feedback and a measurement gap are provided. A user equipment (UE) receives from a network a transmission grant for downlink data on a first control channel. The UE receives the data from the network via a transport channel. In response to the received data, the UE determines whether transmission of an acknowledgement message falls in a measurement gap. Upon determining that the transmission of the acknowledgement message by the UE falls in the measurement gap, and prior to receiving from the network a retransmission grant for the data on the first control channel, the UE sends the acknowledgement message on a second control channel in a sub-frame following the measurement gap. The first control channel is associated with the second control channel.
Abstract:
A method of wireless communication in a wireless network includes transmitting synchronization shift (SS) bits with a channel quality index (CQI) report. The method also includes indicating, via the synchronization shift bits, one or more preferred time slots for receiving a high speed data transmission.
Abstract:
To create gaps in communication activity to perform inter radio access technology (IRAT) measurement, a user equipment may isolate silent periods during voice communications. During those silent periods, instead of transmitting special bursts with erasure packets indicating silent periods, the UE may allocate the time slots that would otherwise have sent the special bursts and indicate those slots as idle so they may be used for other purposes, such as IRAT measurement.
Abstract:
Described herein are aspects related to communicating with a first radio access technology (RAT) and a second RAT, wherein a set of multi-input, multi-output (MIMO) resources is allocated for communication between a mobile station (MS) and a base station (BS) of the first RAT. A request message is sent to the BS of the first RAT requesting reallocation of at least a portion of the set of MIMO resources in a scan duration. During the scan duration, signals are received from a BS of the second RAT over a reallocated subset of the set of MIMO resources and communications occur with the BS of the first RAT over a non-reallocated subset of the set of MIMO resources. During a normal duration subsequent to the scan duration, communications occur with the BS of the first RAT using the set of MIMO resources including at least some of the reallocated subset of the set of MIMO resources.
Abstract:
A method of wireless communication includes activating a receive chain for inter-frequency or inter radio access technology (IRAT) measurement during uplink communications. The method may further include measuring at least one neighbor cell with the activated receive chain during uplink communications.
Abstract:
A method for handling grants includes communicating with a first radio access technology (RAT). An uplink grant that corresponds to at least one uplink timeslot overlapping with a measurement signal from a second RAT is discarded. The discarding of the uplink grant is based at least in part on a signal quality of the first RAT. Measurement of the second RAT during the at least one uplink timeslot is performed.
Abstract:
An early BSIC (base station identity code) abort procedure includes comparing a first signal strength of a serving cell with a first threshold and comparing a second signal strength of a target cell to a second threshold. The first threshold is a sum of a network indicated threshold and a user equipment (UE) threshold. The second threshold is a difference between the network indicated threshold and the UE threshold. When the first signal strength is below the first threshold and the second signal strength is above the second threshold, the base station identity code (BSIC) procedure is initiated. A number of BSIC failure attempts is adaptively set before terminating the BSIC procedure.
Abstract:
A method of wireless communication enables an inter-radio access technology (IRAT) neighbor cell measurement when a serving RAT signal strength is continuously below a first threshold value for a first length of time. The method also disables the IRAT neighbor cell measurement when the serving RAT signal strength is continuously above a second threshold value for a second length of time.