Abstract:
An audio coding method and a related apparatus are disclosed. The audio coding method includes: estimating reference linear prediction efficiency of a current audio frame; determining an audio coding scheme that matches the reference linear prediction efficiency of the foregoing current audio frame; and performing audio coding on the foregoing current audio frame according to the audio coding scheme that matches the reference linear prediction efficiency of the foregoing current audio frame. The technical solutions provided in embodiments of the present disclosure help reduce overheads of audio coding.
Abstract:
Present disclosure provide a linear prediction-based noise signal processing method includes: acquiring a noise signal, and obtaining a linear prediction coefficient according to the noise signal; filtering the noise signal according to the linear prediction coefficient, to obtain a linear prediction residual signal; obtaining a spectral envelope of the linear prediction residual signal according to the linear prediction residual signal; and encoding the spectral envelope of the linear prediction residual signal. According to the noise processing method, the noise generation method, the encoder, the decoder, and the encoding and decoding system that are in the embodiments of the present disclosure, more spectral details of an original background noise signal can be recovered, so that comfort noise can be closer to original background noise in terms of subjective auditory perception of a user, and subjective perception quality of the user is improved.
Abstract:
An image processing method to reduce access pressure of each image in an image set, where the image processing method includes obtaining a quantity of times each image layer in an image set is accessed, determining one or more first image layers, where a quantity of times the first image layer in the image set is accessed is greater than a first threshold, and the first image layer has at least two child image layers, generating a copy of the first image layer, and modifying some child image layers of the first image layer to child image layers of the copy of the first image layer.
Abstract:
An audio signal classification method and apparatus, where the method includes determining, according to voice activity of a current audio frame, whether to obtain a frequency spectrum fluctuation of the current audio frame and store the frequency spectrum fluctuation in a frequency spectrum fluctuation memory, and updating, according to whether the audio frame is percussive music or activity of a historical audio frame, frequency spectrum fluctuations stored in the frequency spectrum fluctuation memory, and classifying the current audio frame as a speech frame or a music frame according to statistics of a part or all of effective data of the frequency spectrum fluctuations stored in the frequency spectrum fluctuation memory.
Abstract:
A signal encoding method and device are disclosed. The method includes, when an encoding manner of a previous frame of a currently-input frame is a continuous encoding manner, predicting a comfort noise that is generated by a decoder according to the currently-input frame when the currently-input frame is encoded into an SID frame, determining an actual silence signal, determining a deviation degree between the comfort noise and the actual silence signal, determining an encoding manner of the currently-input frame according to the deviation degree, and encoding the currently-input frame according to the encoding manner of the currently-input frame. It is determined, according to the deviation degree between the comfort noise and the actual silence signal, that the encoding manner of the currently-input frame is the hangover frame encoding manner or the SID frame encoding manner, which can save communication bandwidth.
Abstract:
Present disclosure provide a linear prediction-based noise signal processing method includes: acquiring a noise signal, and obtaining a linear prediction coefficient according to the noise signal; filtering the noise signal according to the linear prediction coefficient, to obtain a linear prediction residual signal; obtaining a spectral envelope of the linear prediction residual signal according to the linear prediction residual signal; and encoding the spectral envelope of the linear prediction residual signal. According to the noise processing method, the noise generation method, the encoder, the decoder, and the encoding and decoding system that are in the embodiments of the present disclosure, more spectral details of an original background noise signal can be recovered, so that comfort noise can be closer to original background noise in terms of subjective auditory perception of a user, and subjective perception quality of the user is improved.
Abstract:
An audio encoding method and an apparatus are provided. The method includes: determining sparseness of distribution, on spectrums, of energy of N input audio frames (101), where the N audio frames include a current audio frame, and N is a positive integer; and determining, according to the sparseness of distribution, on the spectrums, of the energy of the N audio frames, whether to use a first encoding method or a second encoding method to encode the current audio frame (102), where the first encoding method is an encoding method that is based on time-frequency transform and transform coefficient quantization and that is not based on linear prediction, and the second encoding method is a linear-predication-based encoding method. The method can reduce encoding complexity and ensure that encoding is of relatively high accuracy.
Abstract:
The disclosure provides a method and an apparatus for detecting a voice activity in an input audio signal composed of frames. A noise characteristic of the input signal is determined based on a received frame of the input audio signal. A voice activity detection (VAD) parameter is derived based on the noise characteristic of the input audio signal using an adaptive function. The derived VAD parameter is compared with a threshold value to provide a voice activity detection decision. The input audio signal is processed according to the voice activity detection decision.
Abstract:
An audio coding method includes obtaining a current frame that includes a high-frequency band signal and a low-frequency band signal; performing first coding on the high-frequency band signal and the low-frequency band signal to obtain a first coding parameter; determining a spectrum reservation flag of each frequency bin of the high-frequency band signal, where the spectrum reservation flag indicates whether a first spectrum corresponding to the frequency bin is reserved in a second spectrum corresponding to the frequency bin; and performing second coding on the high-frequency band signal based on the spectrum reservation flag of each frequency bin of the high-frequency band signal to obtain a second coding parameter, where the second coding parameter indicates information about a target tonal component of the high-frequency band signal.
Abstract:
An encoder includes a signal detection circuit and a signal encoding circuit. The signal encoding circuit is configured to encode the Nth-frame downmixed signal when the signal detection circuit detects that an Nth-frame downmixed signal includes a speech signal, or when the signal detection circuit detects that the Nth-frame downmixed signal does not include a speech signal, encode the Nth-frame downmixed signal when the signal detection circuit determines that the Nth-frame downmixed signal satisfies a preset audio frame encoding condition, or skip encoding the Nth-frame downmixed signal when the signal detection circuit determines that the Nth-frame downmixed signal does not satisfy a preset audio frame encoding condition.