MICRO SEGMENT IDENTIFIER INSTRUCTIONS FOR PATH TRACING OPTIMIZATION

    公开(公告)号:US20220174011A1

    公开(公告)日:2022-06-02

    申请号:US17344477

    申请日:2021-06-10

    Abstract: Techniques for optimizing technologies related to network path tracing and network delay measurements are described herein. Some of the techniques may include using an IPv6 header option and/or segment identifier field of a segment list or a TLV of a segment routing header as a telemetry data carrier. The techniques may also include using an SRv6 micro-segment (uSID) instruction to indicate to a node of a network that the node is to perform one or more path tracing actions and encapsulating the packet and forward. Additionally, the techniques may include using short interface identifiers corresponding to node interfaces to trace a packet path through a network. Further, the techniques may include using short timestamps to determine delay measurements associated with sending a packet through a network. In various examples, the techniques described above and herein may be used with each other to optimize network path tracing and delay measurement techniques.

    In-situ operation, administration, and maintenance in segment routing with multiprotocol label switching networks

    公开(公告)号:US11032193B2

    公开(公告)日:2021-06-08

    申请号:US16276847

    申请日:2019-02-15

    Abstract: Presented herein is an “In-situ OAM” (IOAM) mechanism that uses a Segment Routing-Multiprotocol Label Switching (SR-MPLS) IOAM segment identifier that can selectively collect IOAM data from “target” network nodes along a data packet path. In one embodiment, a method includes receiving, at a first network node in the SR-MPLS network, a data packet that includes an MPLS label stack comprising a plurality of segment identifiers (SIDs) associated with a plurality of network nodes. The MPLS label stack includes a first SID associated with the first network node. The method includes determining whether the first SID is an IOAM SID or a regular SID. Upon determining that the first SID is the IOAM SID, the method includes implementing an IOAM function at the first network node. Upon determining that the first SID is the regular SID, the method includes processing the data packet without implementing an IOAM function.

    SCALABLE DISTRIBUTED END-TO-END PERFORMANCE DELAY MEASUREMENT FOR SEGMENT ROUTING POLICIES

    公开(公告)号:US20200252316A1

    公开(公告)日:2020-08-06

    申请号:US16853450

    申请日:2020-04-20

    Abstract: The present technology is directed to a scalable solution for end-to-end performance delay measurement for Segment Routing Policies on both SR-MPLS and SRv6 data planes. The scalability of the solution stems from the use of distributed PM sessions along SR Policy ECMP paths. This is achieved by dividing the SR policy into smaller sections comprised of SPT trees or sub-paths, each of which is associated with a Root-Node. Downstream SID List TLVs may be used in Probe query messages for signaling SPT information to the Root-Nodes Alternatively, this SPT signaling may be accomplished by using a centralized controller. Root-Nodes are responsible for dynamically creating PM sessions and measuring delay metrics for their associated SPT tree section. The root-nodes then send the delay metrics for their local section to an ingress PE node or to a centralized controller using delay metric TLV field of the response message.

    IN-SITU PASSIVE PERFORMANCE MEASUREMENT IN A NETWORK ENVIRONMENT

    公开(公告)号:US20200084147A1

    公开(公告)日:2020-03-12

    申请号:US16243409

    申请日:2019-01-09

    Abstract: Techniques for in-situ passive performance measurement are described. In one embodiment, a method includes receiving a data packet at a first network element, determining whether measurement information is to be collected for the data packet, providing one or more measurement fields for the data packet based on a determination that measurement information is to be collected for the data packet in which at least one measurement field identifies a measurement type, and forwarding the data packet to a second network element. The method further includes determining, by the second network element, the measurement type for the data packet, and performing one or more actions based on the measurement type.

    IN-BAND PERFORMANCE LOSS MEASUREMENT IN IPV6/SRV6 SOFTWARE DEFINED NETWORKS

    公开(公告)号:US20190260657A1

    公开(公告)日:2019-08-22

    申请号:US16129967

    申请日:2018-09-13

    Abstract: Techniques for in-band loss performance measurement are described. In one embodiment, a method includes assigning one of a first indicator or a second indicator to a first plurality of packets and transmitting the first plurality of packets over a first measurement interval. The method also includes receiving one or more packets and determining whether the received one or more packets are assigned the first indicator or the second indicator. The method further includes determining a loss measurement value for the first plurality of packets based on a difference between a number of packets measured by a first counter of a first network element and a number of packets measured by one of a first counter or a second counter of a second network element.

    Signaling co-routed and non co-routed LSPs of a bidirectional packet TE tunnel
    69.
    发明授权
    Signaling co-routed and non co-routed LSPs of a bidirectional packet TE tunnel 有权
    双向分组TE隧道的信令共路由和非共路由LSP

    公开(公告)号:US09083553B2

    公开(公告)日:2015-07-14

    申请号:US14299912

    申请日:2014-06-09

    Abstract: Particular embodiments may enable setup and signaling of co-routed and non co-routed label switched paths (LSPs) of a bidirectional packet traffic engineering (TE) tunnel in an unambiguous manner with respect to provisioning of the LSPs/tunnel. A head-end node may set up the bidirectional packet TE tunnel by computing a forward (and possibly a reverse) direction LSP, and then signal the bidirectional TE tunnel utilizing, e.g., extensions to an associated Resource Reservation Protocol (RSVP) signaling method. The extensions to the associated RSVP signaling method include a plurality of additional Association Types of an Extended Association object carried in a RSVP Path message transmitted by the head-end node to the tail-end node over the forward direction LSP, wherein the additional Association Types explicitly identify the provisioning of the forward and reverse direction LSPs as co-routed or non co-routed.

    Abstract translation: 具体实施例可以使得能够以相对于LSP /隧道的提供的明确方式建立和发送双向分组流量工程(TE)隧道的共路由和非共路由标签交换路径(LSP)。 前端节点可以通过计算前向(可能是反向)LSP来建立双向分组TE隧道,然后利用例如关联的资源预留协议(RSVP)信令方法的扩展来向双向TE隧道发信号。 相关RSVP信令方法的扩展包括由前端节点通过前向LSP发送到尾端节点的RSVP路径消息中携带的扩展关联对象的多个附加关联类型,其中附加关联类型 明确地将前向和反向LSP的配置标识为共路由或非共路由。

    SIGNALING CO-ROUTED AND NON CO-ROUTED LSPS OF A BIDIRECTIONAL PACKET TE TUNNEL

    公开(公告)号:US20140286341A1

    公开(公告)日:2014-09-25

    申请号:US14299912

    申请日:2014-06-09

    Abstract: Particular embodiments may enable setup and signaling of co-routed and non co-routed label switched paths (LSPs) of a bidirectional packet traffic engineering (TE) tunnel in an unambiguous manner with respect to provisioning of the LSPs/tunnel. A head-end node may set up the bidirectional packet TE tunnel by computing a forward (and possibly a reverse) direction LSP, and then signal the bidirectional TE tunnel utilizing, e.g., extensions to an associated Resource Reservation Protocol (RSVP) signaling method. The extensions to the associated RSVP signaling method include a plurality of additional Association Types of an Extended Association object carried in a RSVP Path message transmitted by the head-end node to the tail-end node over the forward direction LSP, wherein the additional Association Types explicitly identify the provisioning of the forward and reverse direction LSPs as co-routed or non co-routed.

Patent Agency Ranking