Abstract:
An imaging directional backlight apparatus including a waveguide, a light source array, for providing large area directed illumination from localized light sources. The waveguide may include a stepped structure, in which the steps may further include extraction features optically hidden to guided light, propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted, diffracted, or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. Viewing windows are formed through imaging individual light sources and hence defines the relative positions of system elements and ray paths. Lateral non-uniformities of output image are improved by means of adjustment of input aperture shape and reflective aperture shape. Cross talk in autostereoscopic and privacy displays may further be improved by light blocking layers arranged on the input end of the waveguide.
Abstract:
Disclosed is a light guiding valve apparatus including a light valve, a two dimensional light emitting element array and an input side arranged to reduce light reflection for providing large area directional illumination from localized light emitting elements with low cross talk. A waveguide includes a stepped structure, in which the steps may include extraction features hidden to guided light propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. Stray light falling onto a light input side of the waveguide is at least partially absorbed.
Abstract:
An autostereoscopic display comprising a temporally multiplexed display arranged to provide viewing windows in a range around 45 degrees to achieve landscape and portrait viewing in cooperation with an observer tracking system. The temporally multiplexed display may comprise a stepped waveguide imaging directional backlight.
Abstract:
Provided is a method and apparatus for linear depth mapping. Linear depth mapping includes using algorithms to correct the distorted depth mapping of stereoscopic capture and display systems.
Abstract:
A method and apparatus for providing optimal correction to depth mapping between captured and displayed stereoscopic content. The solution is derived in a continuous form that can be implemented through CGI scaling techniques compatible with image rendering techniques. Similar correction can be implemented with variable depth-dependent camera separation and disparity re-mapping. The latter is applicable to correcting existing stereoscopic content.
Abstract:
A directional backlight may include a light guiding apparatus including at least one transparent optical waveguide for providing large area collimated illumination from localized light sources. The waveguide is arranged in a first part and a second part with a light injection aperture between the respective parts. Such controlled illumination may provide for efficient, multi-user autostereoscopic displays as well as improved 2D display functionality including high brightness displays and high display efficiency.
Abstract:
A stiffening strip at selected edges of a screen may enable the use and mounting of a high-elastic modulus substrate screen material. Such screen materials may be engineered to provide polarization-preserving characteristics, and be applied to or part of the high-elastic modulus substrate. Furthermore, the stiffening strip may enable the use of screen vibration techniques to reduce speckle in display applications that use projection screens, particularly those display applications using illumination sources prone to speckle such as laser-based projection. The screen vibration may be provided by a vibrating device attached to the stiffening strip.
Abstract:
A directional polarization preserving front projection screen may be preferably produced using an engineered surface. Unlike statistical surfaces, engineered surfaces may provide locally specular reflections, with little to no bulk scatter, while substantially eliminating features smaller than a wavelength of illumination and thus true depolarization. Most, if not all, contours contributing to the slope probability density can be engineered to achieve a desired macroscopic gain profile. The screen may diffuse light by using locally specular reflections, in which a bias angle introduced to the gain profile of the screen may be determined by the slope of the ramps, and with resets that may be substantially hidden from projector illumination.
Abstract:
The present disclosure includes systems and methods for solving speckle problems by exciting the screen with a more complex vibration spectrum. A range of frequencies provides, in effect, a collection of overlapping patterns of high and low displacement, so that all regions of the screen have enough motion to reduce visible speckle. As previously discussed acceptable speckle may be approximately 15% contrast or less, preferably approximately 5% contrast or less at approximately 15 feet from the screen.
Abstract:
Generally, this disclosure concerns the angle sensitivity of polarization switch elements and the resulting impact of the ray direction on performance. More specifically, apparatus and techniques for compensating the angular sensitivity of liquid crystal (LC) polarization switches are described that enhance the performance of polarization switches. For example, a polarization switch is disclosed that transforms linearly polarized light of an initial polarization orientation that includes a first and second liquid crystal cell with a compensator located between the LC cells. The compensator layer is operable to enhance the field of view through the polarization switch. Such compensation techniques are particularly useful for short-throw projection environments.