Abstract:
A focus-detector arrangement includes a radiation source with a focus, arranged on a first side of the subject, for generating a fan-shaped or conical beam of rays; at least one X-ray optical grating arranged in the beam path, with at least one phase grating arranged on the opposite second side of the subject in the beam path generating an interference pattern of the X-radiation preferably, in a particular energy range; and an analysis-detector system which detects at least the interference pattern generated by the phase grating in respect of its phase shift with position resolution. According to at least one embodiment of the invention, at least one X-ray optical grating including bars which are free from overhangs form shadows in the beam path of the fan-shaped or conical beam of rays.
Abstract:
A method for defining image quality characteristics of X-ray based medical projection imaging devices is provided. A spatial frequency-dependent signal-to-noise ratio function includes image quality parameters of spatial resolution, object contrast and noise. The detectability of an object embedded into a defined background, such as a cardiac guide wire in a patient is determined. An X-ray system may be defined and set up for obtaining an optimized image quality to determine the best object detectability for a given patient dose.
Abstract:
An apparatus for spatial modulation of an x-ray beam has a number of planar attenuation elements for x-ray radiation that are disposed in a grid on a carrier and can be pivoted or tilted by a piezoelectric actuator, independently of one another, between at least two positions. One or more sensors with which a piezoelectrically-caused length and/or width and/or position change of the piezoelectrically influenced regions can be detected, are arranged on piezoelectrically influenced regions of the attenuation elements or the actuators. A significant dose reduction and/or dynamic adjustment thereof can be achieved with the apparatus by image adaptation in many areas of x-ray imaging, since a precise determination of the position of each attenuation element in real time is enabled.
Abstract:
The invention relates to a device for protecting a display facility, comprising a protective element for covering an image surface of the display facility. As the protective element is designed to be transparent and the retaining means are provided for the exchangeable arrangement of the protective element in front of the image surface, a protective device is provided, which allows the image surface to be examined and is easy to operate.
Abstract:
A method for defining image quality characteristics of X-ray based medical projection imaging devices is provided. A spatial frequency-dependent signal-to-noise ratio function includes image quality parameters of spatial resolution, object contrast and noise. The detectability of an object embedded into a defined background, such as a cardiac guide wire in a patient is determined. An X-ray system may be defined and set up for obtaining an optimized image quality to determine the best object detectability for a given patient dose.
Abstract:
In an arrangement having an X-ray detector or a gamma detector with detector elements arranged in a matrix in row and column directions that form a detector surface with detection regions that are sensitive to X-rays or gamma radiation and insensitive intermediate regions, and a stray radiation grid or collimator of absorbent structure elements that is arranged over the detector surface, the absorbent structure elements proceed over the intermediate regions and are fashioned such that their detector-side center-to-center spacing in the row direction and/or column direction is greater by a whole-numbered factor than the center-to-center spacing of the detector elements in the same direction, and/or sections of the absorbent structure elements that proceed in one direction exhibit a lower height than sections that proceed in the respectively other direction. Moiré effects can be avoided in the image exposure and, at the same time, a reduced primary radiation absorption by the stray radiation grid or collimator is achieved even given a moving radiation source.
Abstract:
A scattered-ray grid, particularly for medical radiography systems having an X-ray source which emits an X-ray beam with a center ray is formed by a carrier with absorbent elements, namely in the form of lead elements that are realized as separated pins in spaced rows. The rows of pins are oriented such that they proceed toward the intersection of the center ray and the scattered-ray grid.
Abstract:
An x-ray detector for acquiring an x-ray image is in the form of a matrix with at least one of the sides of the amorphous silicon x-ray detector matrix having a cutout or recess with a curved contour that is adapted to the anatomy of the body part to be examined for an average patient.
Abstract:
An x-ray diagnostic installation has a high-voltage generator, an x-ray tube supplied by the high-voltage generator, and a solid-state image converter on which x-rays, attenuated by an examination subject disposed between the x-ray tube and the solid-state image converter, are incident. A control unit is connected to the high-voltage generator and to the solid-state image converter, and controls the high-voltage generator to cause the x-ray tube to emit a first x-ray pulse of a short duration which produces an x-ray exposure in the solid-state image converter. The control unit conducts a read out of the solid-state image converter to obtain a measured value representative of the x-ray dose rate, the control unit using this measured value to calculate the x-ray transparency of the examination subject and, from the x-ray transparency, to calculate an optimum x-ray dose. The control unit then operates the high-voltage generator to cause the x-ray tube to emit a second x-ray pulse, having the optimum x-ray dose, for acquiring a diagnostic image of the examination subject.
Abstract:
An x-ray diagnostics installation has a high-voltage generator for an x-ray tube for generating an x-ray beam, having a detector arranged in the x-ray beam for acquiring the x-ray dose, a control unit connected to the detector for the control of the high-voltage generator, and a solid-state image converter which also serves as the detector. The solid-state image converter has a semiconductor layer with light-sensitive pixel elements arranged in a matrix and an electrically non-conductive layer applied thereon, an electrode layer applied on the electrically non-conductive layer forming a capacitor with the pixel elements to which charge is supplied due to x-ray exposure and that is connected to the control unit for the acquisition of this charge corresponding to the x-ray dose.