Abstract:
A new method for forming stacked capacitors for DRAMs having improved yields when the bottom electrode is misaligned to the node contact is achieved. A planar silicon oxide (SiO.sub.2) first insulating layer, a Si.sub.3 N.sub.4 etch-stop layer, and a disposable second insulating layer are deposited. First openings for node contacts are etched in the insulating layers. A polysilicon layer is deposited and etched back to form node contacts in the first openings. The node contacts are recessed in the second insulating layer, but above the etch-stop layer to form node contacts abutting the etch-stop layer. A disposable third SiO.sub.2 layer is deposited. Second openings for bottom electrodes are etched over and to the node contacts. A conformal second polysilicon layer is deposited and chem/mech polished back to form the bottom electrodes in the second openings. The third and second insulating layers are removed by wet etching to the etch-stop layer. When the second openings are misaligned over the node contact openings, the polysilicon plugs abutting the Si.sub.3 N.sub.4 etch-stop layer protect the SiO.sub.2 first insulating layer from being eroded over the devices on the substrate. The capacitors are completed by forming a thin dielectric layer on the bottom electrodes, and forming top electrodes from a patterned third polysilicon layer.