Abstract:
The disclosure relates to a communication technique for convergence of a 5G communication system for supporting a higher data transmission rate beyond a 4G system with an IoT technology, and a system therefor. The disclosure may be applied to an intelligent service (e.g., smart home, smart building, smart city, smart car or connected car, health care, digital education, retail business, security- and safety-related service, etc.) on the basis of a 5G communication technology and an IoT-related technology. A method is provided for receiving a CSI-RS in a communication system, which includes acquiring, by a UE, from a base station, a configuration for a resource set including a resource set identifier, information for at least one CSI-RS resource, and repetition information, wherein a number of the at least one CSI-RS resource is up to a maximum number of CSI-RS resources per resource set, the repetition information is set as either on or off, and the at least one CSI-RS resource within the resource set is regarded to be transmitted in different OFDM symbols in case that the repetition information is set as on; and transmitting, to the base station, CSI based on the configuration for the resource set.
Abstract:
A method and apparatus for downlink control information (DCI) design for network coordination (coordinated multi-point transmission (CoMP)) are provided. In addition, a method and apparatus for configuration of demodulation reference signal (DMRS) and transmission and reception of DMRS, and a method and apparatus for transmitting and receiving uplink signal according to uplink transmission scheme are provided. The disclosure relates to a communication method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for internet of things (IoT). The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method by a terminal in a wireless communication system is provided. The method includes identifying a slot type of a terminal from a first slot type and a second slot type, determining a position of a demodulation reference signal (DMRS) based on the slot type, and receiving the DMRS based on the position from a base station.
Abstract:
The disclosure relates to a 5G or pre-5G communication system which will be provided to support a higher data rate beyond a 4G communication system such as LTE. According to an embodiment of the disclosure, a method performed by a terminal in a wireless cellular communication system is provided. The method comprises the steps of: receiving, from a serving base station, network deployment information of a neighboring cell, which includes information on the type of the neighboring cell; and receiving data from the serving base station on the basis of the network deployment information of the neighboring cell.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present invention relates to a method and an apparatus for transmitting a reference signal, the method of a terminal according to the present invention comprising: receiving, through a higher layer signaling, configuration information including first information indicating one of a first demodulation reference signal (DMRS)-related table and a second DMRS-related table; receiving control information including second information on DMRS information; analyzing, based on the second information, a DMRS-related table indicated by the first information; and receiving a DMRS based on the result of the analysis.
Abstract:
The disclosure relates to a communication technique for convergence between a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system and a technology for Internet of Things (IoT), and a system thereof. The disclosure may be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, security and safety related services, etc.) based on the 5G communication technology and the IoT-related technology. Disclosed are a method and an apparatus for determining a time domain resource area allocation. A method of a terminal includes receiving, from a base station, downlink control information (DCI) including information indicating a channel occupancy (CO) duration of the base station; identifying a resource associated with a configured grant for an uplink signal within the CO duration; identifying a configuration for a symbol of the resource, in case that a slot format indicator (SFI) for the resource is not provided in the DCI; and transmitting, to the base station, the uplink signal in the resource based on the identified configuration.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT), and may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure describes methods for supporting uplink sub-band precoding for effective data transmission and reception, reporting a failure of channel state measurement of a terminal, and reporting a channel state according to multiple channel state information reference signal (CSI-RS) transmission.
Abstract:
A method for transmitting interference related control information in order to improve a reception performance of a terminal that receives a downlink in a cellular mobile communication system based on the LTE-A system includes receiving a higher layer control message including probability information of a modulation scheme for an interference signal, from a base station, and performing error-correcting coding using a probability value of a modulation scheme for an interference signal, which is included in the higher layer control message. A base station in a mobile communication system, the base station includes a controller configured to generate probability information of a modulation scheme for an interference signal, and transmit, to the terminal, a higher layer control message comprising the probability information of the modulation scheme for the interference signal.
Abstract:
The disclosure relates to a fifth generation (5G) or sixth generation (6G) communication system for supporting a higher data transmission rate. A method for improving the coverage of an uplink channel for uplink transmission is provided. The method includes receiving, from a base station, configuration information including resource allocation information for transport block (TB) processing over multiple slots (TBoMS), repetitive transmission configuration information, and frequency hopping information, identifying whether repetitive transmission of the TBoMS is configured, based on the configuration information, determining a frequency hopping pattern between TBoMS repetitive transmissions based on the frequency hopping information and a number of slots for frequency hopping in case that the repetitive transmission of the TBoMS is configured, and performing the repetitive transmission of the TBoMS based on the frequency hopping pattern.
Abstract:
Methods and apparatuses in a communication system is provided. One or more configurations associated with an aperiodic channel state information (CSI) report are received from a base station via higher layer signaling. Downlink control information (DCI) including a CSI request field indicating a configuration among the one or more configurations is received from the base station. The aperiodic CSI report is transmitted to the base station based on the configuration. In case that a medium access control (MAC) control element (CE) is used to map the configuration to a value of the CSI request field based on a number of the one or more configurations and a size of the CSI request field, the CSI request field indicates the configuration from at least one configuration selected via the MAC CE.