Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive from a base station a measurement configuration signal comprising a measurement resource configuration associated with a cross-link interference signal strength measurement. The UE may perform the cross-link interference signal strength measurement for one or more UEs associated with one or more intra-frequency neighboring cells according to the measurement resource configuration, wherein the cross-link interference signal strength measurement is performed during an intra-frequency measurement gap. The UE may transmit a report of the cross-link interference signal strength measurement to the base station.
Abstract:
This disclosure provides systems, methods, and apparatus for wireless communications that support fast user equipment (UE) handover between base stations. A UE may receive, from a source base station, a configuration for reference signal transmission at a set of uplink transmit power levels. The UE may transmit multiple uplink reference signal repetitions based on the configuration. The source base station may transmit a request message to a target base station to measure the multiple uplink reference signal repetitions. The target base station may select an uplink reference signal and measure a transmit power correction. The target base station may transmit an indication to the source base station of the selection and transmit power correction. The source base station may evaluate the indications and select the target base station. The source base station may forward to the indicated contents, and the UE may switch and synchronize with the target base station.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive from a base station a measurement configuration signal comprising a measurement resource configuration associated with a cross-link interference signal strength measurement. The UE may perform the cross-link interference signal strength measurement for one or more UEs associated with one or more intra-frequency neighboring cells according to the measurement resource configuration, wherein the cross-link interference signal strength measurement is performed during an intra-frequency measurement gap. The UE may transmit a report of the cross-link interference signal strength measurement to the base station.
Abstract:
Methods, systems, and devices for wireless communications are described that provide for user equipment (UE) camping in a virtual cell. A UE may camp in a virtual cell and may be in an idle mode or an inactive mode in the virtual cell. The UE may transition out of the idle or inactive mode and switch from camping in the virtual cell to connecting to a physical cell encompassed by the virtual cell through reselection, redirection, and handover procedures. The virtual cell may include a central unit and multiple distributed units, which may be configured in various physical implementations. Additionally, the virtual cell may be limited to broadcast only or selective unicast signaling.
Abstract:
Methods, systems, and devices are described for concurrently performing handoff-related measurements for neighbor cells using multiple input multiple output (MIMO) antenna resources. In one example, a mobile device is in communication with a serving cell. Handoff-related measurements of first wireless signals from a first neighbor cell are performed. The first wireless signals are received at first MIMO antenna resources of a device. Handoff-related measurements of second wireless signals from a second neighbor cell are performed, as well. The second wireless signals are received at second MIMO antenna resources concurrently with the first wireless signals received at the first MIMO antenna resources. The first handoff-related measurements and the second handoff-related measurements may be performed during a scan interval. A type of handoff-related measurement to perform may be determined based on a determined length of the scan interval.
Abstract:
Methods, systems, and devices for wireless communications are described. A wireless device may detect a collision of paging messages for a first subscription and a second subscription of the wireless device during a paging processing duration, the first receive chain including at least one antenna path. The wireless device may determine that, in a connected mode, it is configured to operate a second receive chain with one or more additional antenna paths, and may allocate, for a subsequent instance of the paging processing duration, the first subscription to one of the first receive chain or the second receive chain, and the second subscription to the other of the first receive chain or the second receive chain. The wireless device may monitor, during the subsequent instance of the paging processing duration, for a first paging message and a second paging message using the first and second receive chains.
Abstract:
A user equipment (UE) speeds up circuit switched fallback call establishment and reduces circuit switched fallback call establishment failure. In one instance, the UE receives a redirection command including a list of current neighbor cells/frequencies. The UE determines whether a current serving cell matches a previous serving cell stored in the UE. The UE also evaluates the list of current neighbor cells to determine whether each current neighbor cell matches a previous neighbor cell associated with the previous serving cell. The UE then determines neighbor cells for power scan and/or synchronization channel decoding procedures to select one of the current neighbor cells to redirect the UE based on the previously recorded type of redirection result.
Abstract:
Embodiments include systems and methods for managing cell selection performed in a multi-subscription multi-standby communication device. A device processor may operate the multi-subscription multi-standby communication device in a full concurrency mode in communication with a first cell and a second cell. The device processor may determine whether a detected third cell supports operation of the multi-subscription multi-standby communication device in the full concurrency mode. The device processor may perform cell reselection to the detected third cell in response to determining that the detected third cell supports operation of the multi-subscription multi-standby communication device in the full concurrency mode.
Abstract:
The present disclosure presents a method and an apparatus for inter radio access technology (IRAT) cell reselection. For example, the method may include identifying that a user equipment (UE) in an idle or a discontinuous reception (DRX) mode is camped on a cell of a first RAT, determining that the cell the UE is camped on is not broadcasting any neighbor cell of a second RAT, scanning for one or more frequencies of the second RAT based on the determination, and triggering a cell reselection to a cell of the second RAT, wherein the cell of the second RAT is associated with a frequency identified during the scanning. As such, an autonomous IRAT cell reselection may be achieved.
Abstract:
A user equipment (UE) prioritizes searches and/or measurements of neighbor cells/frequencies based on a level of mobility of a UE. In one instance, the UE identifies a priority of a layer of a radio access technology (RAT) to be measured or searched and identifies a level of mobility of the UE. A sensor module of the UE may determine the level of mobility of the UE and generate an indication corresponding to the level of mobility of the UE. The UE prioritizes a periodicity of interlayer search and/or measurement based on the priority of the layer to be measured and the level of the mobility of the UE.