Abstract:
A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The first inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.
Abstract:
A liquefied gas tank installed in a surrounding structural body includes: a tank main body in which a liquefied gas is storable, the tank main body including a plurality of planar portions and corner portions between the planar portions, the corner portions having less rigidity than that of the planar portions; a bottom supporting body that supports the tank main body from below the tank main body; and a plurality of side supporting bodies that support the tank main body from side of the tank main body. The tank main body is configured to stand by itself by being supported by the bottom supporting body when the tank main body stores no cargo, and be supported by the bottom supporting body and the side supporting bodies when the liquefied gas is stored in the tank main body.
Abstract:
A method of transporting natural gas by liquefaction of natural gas at ambient temperature, achieved by mixing the natural gas at high pressure with a hydrocarbon that is a stable liquid at ambient temperature and ambient pressure. The hydrocarbon liquid may be crude oil or a distillate of crude oil. The method includes: liquefaction: mixing the natural gas with the hydrocarbon liquid at an ambient temperature and a high pressure to generate a liquid mixture, which contains the natural gas dissolved in the hydrocarbon liquid; shipping: transporting the liquid mixture using a marine tanker, during which the liquid mixture is maintained at ambient temperature and the high pressure; and regasification: at the destination, releasing a gas from the liquid mixture by lowering the pressure of the liquid mixture. The hydrocarbon liquid may be used multiple times.
Abstract:
Systems and methods to create and store a liquid phase mix of natural gas absorbed in light-hydrocarbon solvents under temperatures and pressures that facilitate improved volumetric ratios of the stored natural gas as compared to CNG and PLNG at the same temperatures and pressures of less than −80° to about −120° F. and about 300 psig to about 900 psig. Preferred solvents include ethane, propane and butane, and natural gas liquid (NGL) and liquid pressurized gas (LPG) solvents. Systems and methods for receiving raw production or semi-conditioned natural gas, conditioning the gas, producing a liquid phase mix of natural gas absorbed in a light-hydrocarbon solvent, and transporting the mix to a market where pipeline quality gas or fractionated products are delivered in a manner utilizing less energy than CNG, PLNG or LNG systems with better cargo-mass to containment-mass ratio for the natural gas component than CNG systems.
Abstract:
An LNG fueling station according to the present invention includes: an installation part on which an LNG tank container is installed, and a supply part for supplying liquefied natural gas from the LNG tank container installed on the installation part to an object for supply, wherein the LNG tank container can be transported and installed while storing the liquefied natural gas, and the LNG tank container is transported to the installation part and then installed on the installation part.
Abstract:
A method for manufacturing a pressure vessel includes blow-molding a liner vessel in a shape having at least one bulkhead and two or more separated spaces and inserting a bulkhead reinforcing plate between the separated spaces. The method further includes forming an outer layer comprising a glass fiber or a glass fiber-carbon fiber composite material on the outside of the liner vessel and forming at least one anchor site configured to couple the bulkhead reinforcing plate to the outer layer.
Abstract:
Provided are an LNG storage container with an inner shell, which is capable of efficiently storing LNG or pressurized LNG (PLNG) pressurized at a predetermined pressure and supplying the LNG or PLNG to a consumption place, and capable of reducing manufacturing costs by minimizing the use of a metal having excellent low temperature characteristic, and a method for manufacturing the same. The LNG storage container includes: an inner shell configured to store LNG inside; an outer shell configured to enclose the outside of the inner shell such that a space is formed between the inner shell and the outer shell; a support installed in the space between the inner shell and the outer shell to support the inner shell and the outer shell; and a heat insulation layer part installed in the space between the inner shell and the outer shell and configured to reduce a heat transfer.
Abstract:
In a BOG treatment system, boil-off gas (BOG) discharged from a storage tank is compressed, most of the BOG is used as the fuel of vessel engines, and a remaining part of the BOG is liquefied by cold energy of BOG newly discharged from the storage tank and is returned to the storage tank, thereby efficiently utilizing the BOG. The BOG treatment system for a vessel includes a compressor compressing the BOG discharged from the storage tank; a medium pressure gas engine receiving at least a part of the BOG compressed by the compressor, as fuel; a heat exchanger exchanging heat between the remaining part of the BOG, which is not supplied to the medium pressure gas engine as fuel, and the BOG, which is discharged from the storage tank and is not compressed; and an expander decompressing the remaining part of the BOG cooled by the heat exchanger.
Abstract:
Liquid fuels are routinely used to provide energy for many different uses. Transferring and distributing liquid fuels have many challenges including providing safe and reliable transfers and distributions. Liquid fuels, for example, Liquid Natural Gas (LNG) may be transferred from a vessel at a relatively low flow rate. This system allows for leaks to be captured and contained to an area of a water based transfer platform rather than allowing the spill to spread out on the surface of the water.
Abstract:
To obtain an economical hull structure by employing an independent prismatic tank having a large tank volume with respect to a ship size and reducing material cost.Provided is a LNG ship or a LPG ship having a structure in which a substantially prismatic tank is installed inside a hold while not being integrated with a hull structure material, wherein the tank is a long tank 30, which has a larger dimension of a ship longitudinal direction than that of a ship width direction and is installed inside the hold along a ship longitudinal direction, and the long tank 30 is divided into two or more liquid cargo compartments 30-1, 30-2, 30-3 in the ship longitudinal direction by one or more bulkhead plates 31, each of which is formed in the ship width direction as one plate.