Abstract:
A wind turbine includes a generator and a control system. The control system is configured to determine whether a predefined amount of turbulence will be induced to the wind turbine by a wake zone created by a wind turbine upstream thereof. The control system is also configured to adjust at least one constraint of the wind turbine to a first setting if the amount of turbulence is greater than the predefined amount, the constraint affecting power produced by the generator, and to adjust the constraint of the wind turbine to a second setting if the amount of turbulence is not greater than the predefined amount.
Abstract:
A method for determining wind conditions within a geographic area based on a plurality of input wind resource grids. The input wind resource grids include input points associated with a geographic position and a wind condition. An output wind resource grid having a plurality of output points is defined. Each output point is associated with a geographic position within the geographic area. For each output point in the output wind resource grid, a wind condition is calculated based at least in part on wind conditions associated with at least some of the input points. A wind condition associated with an input point may be weighted based on the proximity of the output point to a meteorological instrument associated with the input point.
Abstract:
A wind turbine includes a generator and a control system. The control system is configured to determine whether a predefined amount of turbulence will be induced to the wind turbine by a wake zone created by a wind turbine upstream thereof. The control system is also configured to adjust at least one constraint of the wind turbine to a first setting if the amount of turbulence is greater than the predefined amount, the constraint affecting power produced by the generator, and to adjust the constraint of the wind turbine to a second setting if the amount of turbulence is not greater than the predefined amount.
Abstract:
The layout and configuration of wind turbines in a wind power plant includes identifying constraints of a power plant site and defining at least one region in the site for placement of a plurality of wind turbines. The wind state at the region in the site is determined. An actual wind condition at the various possible wind turbine locations within the site is determined by modeling the wind state with wake effects at the respective wind turbine locations. Individual wind turbine configuration and location within the region is then selected as a function of the actual wind conditions each of the individual wind turbine locations to optimize power output of the individual wind turbines. The selection of turbine configuration includes selection of a turbine hub height that minimizes wake loss of the individual wind turbines as a function of the actual wind conditions predicted for the turbine location.
Abstract:
The layout and configuration of wind turbines in a wind power plant includes identifying constraints of a power plant site and defining at least one region in the site for placement of a plurality of wind turbines. The wind state at the region in the site is determined. An actual wind condition at the various possible wind turbine locations within the site is determined by modeling the wind state with wake effects at the respective wind turbine locations, the wake effects resulting from cumulative placement of other wind turbines at various locations in the region. Individual wind turbine configuration and location within the region is then selected as a function of the actual wind conditions that each of the individual wind turbine locations to optimize power output of the individual wind turbines. The selection of turbine configuration includes selection of a turbine hub height that minimizes wake loss of the individual wind turbines as a function of the actual wind conditions predicted for the turbine location.