Abstract:
A glass composition of the present invention is an oxide glass, in which the percentages of elements except for oxygen (O) contained therein are as follows, in terms of atom %: the amount of boron (B) exceeds 72% but does not exceed 86%, the total amount of lithium (Li), sodium (Na), and potassium (K) is 8% to 20%, the total amount of magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba) is 1% to 8%, the amount of silicon (Si) is from 0% to less than 15%, and the amount of zinc (Zn) is from 0% to less than 2%. This glass composition further may contain molybdenum (Mo) and/or tungsten (W) in the range of more than 0% but not more than 3%.
Abstract:
The present invention aims to drive a PDP at low voltage by providing a material with a high secondary electron emission coefficient under a practical manufacturing condition. In order to achieve the aim, a crystalline oxide selected from the group consisting of CaSnO3, SrSnO3, BaSnO3, and a solid solution of two or more of them, in which an amount of Ca, Sr or Ba in a surface region thereof is reduced, is used as a material for a protective film when a plasma display panel is produced.
Abstract:
A printer includes a first receiving unit that receives a print job containing a printing requirement, where the printing requirement is set as either an indispensable requirement that is indispensable for executing the print job or a desired requirement that is desirable for executing the print job; a second receiving unit that receives, from each of external image forming apparatuses connected to the image forming apparatus via a network, a printability level indicating whether the external image forming apparatus has a printing function satisfying the indispensable requirement or a printing function satisfying the desired requirement; a selecting unit that selects an image forming apparatus that executes the print job from the external image forming apparatuses by checking the printability level; and a print-operation control unit that sends the print job to the selected image forming apparatus and causes the selected image forming apparatus to execute the print job.
Abstract:
A plasma display panel (200) of the present invention includes a first panel (1) and a second panel (8). A discharge space (14) is formed between the first panel (1) and the second panel (8). In the plasma display panel (200), an electron emitting material (20) is disposed to face the discharge space (14). The electron emitting material (20) contains Sn, an alkali metal, O (oxygen), and at least one element selected from the group consisting of Ca, Sr, and Ba.
Abstract:
Disclosed is a glass composition composed of an oxide glass wherein the percentages of constitutional elements other than oxygen (O) expressed in atomic % are as follows: boron (B) is not less than 56% and not more than 72%; silicon (Si) is not less than 0% and not more than 15%; Zinc (Zn) is not less than 0% and not more than 18%; potassium (K) is not less than 8% and not more than 20%; and the total of K, sodium (Na) and lithium (Li) is not less than 12% and not more than 20%. This glass composition further may contain at least one of magnesium (Mg), calcium (Ca), strontium (Sr) and barium (Ba) in an amount of more than 0% and not more than 5%, and molybdenum (Mo) and/or tungsten (W) in an amount of more than 0% and not more than 3%.
Abstract:
An oxide ceramic material is provided to contain aluminum oxide as a principal component, and at least one selected from A and B shown below as an auxiliary component: A: niobium oxide and copper oxide B: copper oxide, titanium oxide, and silver oxide. With this, it is possible to provide an oxide ceramic material having sinterability at a low temperature and a high heat conductivity, as well as a ceramic substrate, a ceramic laminate device, and a power amplifier module employing the same.
Abstract:
The present invention provides a composite magnetic body containing metallic magnetic powder and thermosetting resin and having a packing ratio of the metallic magnetic powder of 65 vol % to 90 vol % and an electrical resistivity of at least 104 &OHgr;·cm. When a coil is embedded in this composite magnetic body, a miniature magnetic element can be obtained that has a high inductance value and is excellent in DC bias characteristics.
Abstract:
The present invention provides a composite magnetic body containing metallic magnetic powder and thermosetting resin and having a packing ratio of the metallic magnetic powder of 65 vol % to 90 vol % and an electrical resistivity of at least 104 &OHgr;·cm. When a coil is embedded in this composite magnetic body, a miniature magnetic element can be obtained that has a high inductance value and is excellent in DC bias characteristics.
Abstract:
A green sheet including a binder containing an acrylic resin having no polar group and a ceramics material in powder is prepared, and connection via are formed in the green sheet. Further, a conductor layer having virtually no voids is placed on the green sheet and a mask is also placed on the conductor layer. Then, the conductor layer is patterned by wet-etching so that wiring is formed thereon. A plurality of the green sheets thus formed are laminated, and a binding sheet, which contains an inorganic composition that has virtually no sintering shrinkage at the firing temperature of the multi-layered body as a main component, is formed on either both surfaces or one surface of the laminated body, and this is then fired, and thereafter, the binding sheet is removed.
Abstract:
A low-cost and small-size image reader incorporating a variable power function. An original document is irradiated with the light from a light source. The light is reflected in a reading position. The reflected light is incident on a mirror block via a fixed mirror. The light incident on the mirror block is deflected by a pair of mirrors. An optical path is thus extended and shortened in its length without taking a space in the horizontal directions of the reader. The mirror block and the lens are provided with driving devices. The mirror block and the lens are moved to adjust a focal point and a magnification.