Abstract:
An image sensor is provided for obtaining an ultra-high resolution image. The image sensor includes a plurality of two-dimensionally arranged pixels, each of the plurality of pixels including a first meta-photodiode that selectively absorbs light of a red wavelength band, a second meta-photodiode that selectively absorbs light in a green wavelength band, and a third meta-photodiode that selectively absorbs light of a blue wavelength band. A width of each of the plurality of pixels of the image sensor may be less than a diffraction limit.
Abstract:
A color filter array may include a plurality of color filters arranged two-dimensionally and configured to allow light of different wavelengths to pass therethrough. Each of the plurality of color filters includes at least one Mie resonance particle and a transparent dielectric surrounding the at least one Mie resonance particle.
Abstract:
Provided is an image sensor including a color separating lens array. The image sensor includes a sensor substrate including a first pixel configured to sense first wavelength light, and a second pixel configured to sense second wavelength light; and a color separating lens array including a first wavelength light condensing region in which the first wavelength light is condensed onto the first pixel, wherein an area of the first wavelength light condensing region is greater than an area of the first pixel, and a distance between the sensor substrate and the color separating lens array is less than a focal distance of the first wavelength light condensing region with respect to the first wavelength light.
Abstract:
An image sensor includes a sensor substrate including a first photosensitive cell and a second photosensitive cell configured to sense light and color separating lens array including a first region and a second region, wherein the first region faces the first photosensitive cell and includes first nanopost and the second region faces the second photosensitive cell and includes second nanopost. The first nanopost and the second nanopost form a phase distribution at a location where the lights pass through the first region and the second region, by the phase distribution, light having a first wavelength and light having a second wavelength different from each other from among incident light incident on the color separating lens array are branched in different directions and the light having the first wavelength is condensed onto the first photosensitive cell and the light having the second wavelength is condensed onto the second photosensitive cell.
Abstract:
Disclosed are a combination structure including a nanostructure array including a plurality of nanostructures with a smaller dimension than the near-infrared wavelength are repeatedly arranged and a light absorption portion adjacent to the nanostructure array and including a near-infrared absorbing material configured to absorb light in at least a portion of near-infrared wavelength regions, an optical filter, an image sensor, a camera module, and an electronic device including the same.
Abstract:
An image sensor including a color splitting element and a method of operating the image sensor are provided. The image sensor may include a plurality of unit pixels, and each pixel of the plurality of unit pixels may include a plurality of color sub-pixels. At least one color sub-pixel of the plurality of color sub-pixels may include a color splitting element that has a first refractive index greater than a second refractive index of a material that surrounds the first color splitting element.
Abstract:
An image sensor, and an apparatus and method of acquiring an image by using the image sensor are provided. The image sensor includes a color filter having an array of a plurality of types of color filter elements, where each of the color filter elements transmits visible light in a certain wavelength band and blocks visible light outside the certain wavelength band; a photoelectric conversion cell array that detects light that has been transmitted through the color filter; and a modulator, disposed on the photoelectric conversion cell array, which changes a rate of light transmitted to the photoelectric conversion cell array based on an applied voltage.
Abstract:
A stacked type image sensor including color separation elements, and an image pickup apparatus including the stacked type image sensor, are provided. The stacked type image sensor includes a first light sensing layer including first pixels configured to absorb and detect light of a first wavelength band and transmit light of a second wavelength band and a third wavelength band, and a second light sensing layer disposed to face the first light sensing layer, the second light sensing layer including second pixels configured to detect light of the second wavelength band and third pixels configured to detect light of the third wavelength band. The color separation elements are disposed between the first light sensing layer and the second light sensing layer, and are configured to direct the light of the second wavelength band toward the second pixels, and direct the light of the third wavelength band toward the third pixels.
Abstract:
An image sensor and a method of manufacturing the same are provided. The image sensor includes a photoelectric conversion layer; a color filter disposed on the photoelectric conversion layer; a low refractive index layer disposed on the color filter; a beam splitter disposed within the low refractive index layer; and a lens layer disposed on the low refractive index layer and covering the beam splitter. The beam splitter extends in a diagonal direction of a pixel area of the color filter, in a plan view.
Abstract:
An image sensor including a color filter isolation layer and a method of manufacturing the image sensor. The image sensor includes a plurality of color filters that transmit light of a predetermined wavelength band to a light sensing layer. The image sensor also includes an isolation layer disposed between adjacent ones of the plurality of color filters. The isolation layer is formed of a material having a lower refractive index than a refractive index of the color filters, thus totally internally reflecting light incident on the isolation layer from one of the plurality of color filters.