Abstract:
Methods and apparatus for efficient transmission of data by half-duplex transceivers in satellite communication systems are provided. Time reference for the return link is skewed or time-lagged relative to the time reference for the forward link to reduce the amount of guard time required to separate return link transmission from forward link reception by the half-duplex transceiver of a user terminal. The guard time is determined based on a maximum differential round-trip propagation delay and transition times of the half-duplexer transceiver to switch between transmit and receive modes. In a satellite communication system in which a large number of active user terminals are present in a beam coverage, random time offsets are applied to spread approximately equal traffic loads across the time offsets.
Abstract:
Disclosed is a method for wireless communication for determining the position of a wireless node. The method comprises receiving a set of reference signals from a set of at least four positioning devices, wherein the positioning devices are not arranged in a single plane. A signal propagation delay of each one of the set of reference signals is determined and a position of each one of the set of positioning devices is obtained. A convex localization problem is solved for the wireless node based at least in part on the determined signal propagation delay of each one of the set of reference signals and the position of each one of the set of positioning devices. The position of the wireless node is determined based at least in part on solving of the convex localization problem.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit information associated with one or more uplink transmissions performed by the UE within an L-band. The UE may receive, after transmitting the information, an adjusted frequency domain resource allocation that indicates an adjusted frequency range to be used by the UE for performing one or more other uplink transmissions. Numerous other aspects are described.
Abstract:
Certain aspects of the present disclosure provide techniques for user equipment (UE) positioning using one or more intelligent reflecting surfaces (IRSs). A method that may be performed by a UE includes for each IRS of the one or more IRSs: identifying a first IRS reflection center, measuring a first impulse response from the IRS to obtain a first measured impulse response representation, determining a first impulse response for a first ray reflected from the first IRS reflection center of the IRS, estimating a first position of the UE based on, at least, the first IRS reflection centers for each of the one or more IRSs and the first impulse responses for each of the one or more IRSs, and estimating a second position of the UE in an iterative manner until one or more conditions are satisfied.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive system information associated with a set of neighboring cells included in a non-terrestrial network (NTN). The UE may be connected to or camped in a current cell included in the NTN. The current cell may be associated with a current platform. The UE may monitor a neighboring cell, of the set of neighboring cells, based at least in part on the system information. Numerous other aspects are provided.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a network node, an indication of a subset of tracking reference signal (TRS) resource sets from a plurality of TRS resource sets. The UE may receive, from the network node, a TRS availability indication bitmap that indicates an availability of a TRS associated with the subset of TRS resource sets. The UE may determine that the TRS is available based at least in part on the TRS availability indication bitmap. The UE may receive, from the network node, the TRS based at least in part on the TRS availability indication bitmap indicating that the TRS is available. Numerous other aspects are described.
Abstract:
Certain aspects of the present disclosure provide techniques for user equipment (UE) positioning using one or more intelligent reflecting surfaces (IRSs). A method that may be performed by a UE includes for each IRS of the one or more IRSs: identifying a first IRS reflection center, measuring a first impulse response from the IRS to obtain a first measured impulse response representation, determining a first impulse response for a first ray reflected from the first IRS reflection center of the IRS, estimating a first position of the UE based on, at least, the first IRS reflection centers for each of the one or more IRSs and the first impulse responses for each of the one or more IRSs, and estimating a second position of the UE in an iterative manner until one or more conditions are satisfied.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive downlink control information (DCI) carrying information indicating an updated configuration for the UE, wherein the DCI is associated with a hybrid automatic repeat request (HARQ) process for which HARQ feedback regarding the DCI is disabled. The UE may transmit the HARQ feedback regarding the DCI based at least in part on the DCI carrying the information indicating the updated configuration. Numerous other aspects are described.
Abstract:
A base station may select a plurality of node parameters of a node including at least one of: a number of UEs that have accessed a network while the node is operational, an amount of information that has been communicated through the network while the node is operational, one or more QoS measurements while the node is operational, or one or more resources utilized for operation of the node. The base station may configure, upon selecting the plurality of node parameters, an access threshold for the node based on the plurality of node parameters. The base station may transmit, to the node, an indication of the access threshold for the node based on the plurality of node parameters. The node may configure, upon receiving the indication of the access threshold, access to the node for each of the number of UEs based on the access threshold.
Abstract:
A node including a non-planar reflective surface is disclosed. The node may receive, from a base station, an indication of a surface configuration of at least one convex reflective surface of the node. The indication may indicate that the surface configuration corresponds to at least one of a broadcast configuration or a UE-specific configuration. The node may configure, upon receiving the indication of the surface configuration, the at least one convex reflective surface based on the surface configuration. The surface configuration may correspond to at least one of the broadcast configuration or the UE-specific configuration. The node may forward communication received from, or forward communication to, the base station based on the surface configuration of the at least one convex reflective surface.