Class-based traffic engineering in an IP network

    公开(公告)号:US11240142B2

    公开(公告)日:2022-02-01

    申请号:US16587547

    申请日:2019-09-30

    Abstract: Techniques are described for class-based traffic engineering in an IP network. For example, routers of an IP network may establish one or more constrained traffic engineered paths using a link-state protocol (e.g., IGP) without using signaling protocols, such as RSVP or SPRING, or encapsulating packets over MPLS. For example, an egress router of the IP network may receive a capability message specifying the capability of routers to compute a constrained path to the egress router, wherein the capability message comprises path computation information including an identifier of a path computation algorithm to be used by the one or more of the plurality of network devices to reach the egress network device. The egress router may advertise a reachability message including a destination IP prefix and the identifier of the path computation algorithm to cause routers in the IP network to compute the constrained path to reach the egress router.

    USING AND PROCESSING PER SLICE SEGMENT IDENTIFIERS IN A NETWORK EMPLOYING SEGMENT ROUTING

    公开(公告)号:US20210029026A1

    公开(公告)日:2021-01-28

    申请号:US16588556

    申请日:2019-09-30

    Abstract: The same prefix segment identifier (SID) may be configured and/or used for either (A) more than one prefix within an interior gateway protocol (IGP) domain, or (B) one prefix with more than one path computation algorithm within the IGP domain by: (a) receiving, by a node in the IGP domain, an IGP advertisement including both (1) a prefix SID and a segment routing global block (SRGB) slice identifier; (b) determining whether or not the SRGB slice identified by the SRGB slice identifier is provisioned on the node; and (c) responsive to a determination that the SRGB slice identified by the SRGB slice identifier is not provisioned on the node, not processing the prefix SID included in the received IGP advertisement, and otherwise responsive to a determination that the SRGB slice identified by the SRGB slice identifier is provisioned on the node, (1) processing the prefix SID and SRGB slice to generate a unique, per SRGB slice, MPLS label for the prefix, and (2) updating a label forwarding information base (LFIB) for the node using the unique, per SRGB slice, label for the prefix and the prefix.

    Devices for analyzing and mitigating dropped packets

    公开(公告)号:US10771363B2

    公开(公告)日:2020-09-08

    申请号:US15994778

    申请日:2018-05-31

    Abstract: A control device may subscribe to receive data from a network device. The data may be associated with a plurality of packets that have been dropped by the network device and include a first descriptor based on a type of packet drop associated with a packet of the plurality of packets that have been dropped by the network device, and one or more second descriptors based on a packet flow associated with the plurality of packets that have been dropped by the network device. The control device may determine a dropped packet profile associated with the network device, based on the first descriptor and the one or more second descriptors. The control device may generate a first notification based on the dropped packet profile associated with the network device and transmit the first notification to cause an action to be performed based on the first notification.

    APPARATUS, SYSTEM, AND METHOD FOR PROVIDING NODE PROTECTION ACROSS LABEL-SWITCHED PATHS THAT SHARE LABELS

    公开(公告)号:US20200021535A1

    公开(公告)日:2020-01-16

    申请号:US16577864

    申请日:2019-09-20

    Abstract: The disclosed computer-implemented method may include (1) receiving, at a network node within a network, a packet from another network node within the network, (2) identifying, within the packet, a label stack that includes a plurality of labels that collectively represent at least a portion of a label-switched path within the network, (3) popping, from the label stack, a label that corresponds to a next hop of the network node, (4) determining, based at least in part on the label, that the next hop has experienced a failure that prevents the packet from reaching a destination via the next hop, (5) identifying a backup path that merges with the label-switched path at a next-to-next hop included in the label-switched path, and then (6) forwarding the packet to the next-to-next hop via the backup path. Various other methods, systems, and apparatuses are also disclosed.

    Apparatus, system, and method for imposing label stack entries on MPLs packets

    公开(公告)号:US10469371B2

    公开(公告)日:2019-11-05

    申请号:US15863611

    申请日:2018-01-05

    Abstract: The disclosed system may include (1) receiving, at an ingress node within a network, a request to forward a packet along a label-switched path to an egress node within the network, (2) identifying a limit on the number of labels that the ingress node is capable of forwarding within a label stack of the packet, (3) determining that the number of hops within the label-switched path exceeds the limit on the number of labels that the ingress node is capable of forwarding, (4) selecting at least one of the hops within the label-switched path to act as a delegation node that imposes, onto the label stack of the packet, at least one label corresponding to a downstream hop within the label-switched path and (5) forwarding the packet from the ingress node to the delegation node to enable the delegation node to impose the label onto the label stack.

    APPARATUS, SYSTEM, AND METHOD FOR IMPOSING LABEL STACK ENTRIES ON MPLS PACKETS

    公开(公告)号:US20180367450A1

    公开(公告)日:2018-12-20

    申请号:US15863611

    申请日:2018-01-05

    CPC classification number: H04L45/50 H04L45/20

    Abstract: The disclosed system may include (1) receiving, at an ingress node within a network, a request to forward a packet along a label-switched path to an egress node within the network, (2) identifying a limit on the number of labels that the ingress node is capable of forwarding within a label stack of the packet, (3) determining that the number of hops within the label-switched path exceeds the limit on the number of labels that the ingress node is capable of forwarding, (4) selecting at least one of the hops within the label-switched path to act as a delegation node that imposes, onto the label stack of the packet, at least one label corresponding to a downstream hop within the label-switched path and (5) forwarding the packet from the ingress node to the delegation node to enable the delegation node to impose the label onto the label stack.

Patent Agency Ranking