Abstract:
A seal for a rotary machine includes a flexible element extending circumferentially about a rotor and extending generally radially from a first end to a free second end. The flexible element is coupled proximate the first end for rotation with the rotor. The flexible element extends at substantially a first angle between at least an intermediate portion of the flexible element and the free second end when the rotor is operating at less than a critical speed, such that a clearance gap is defined between the free second end and a stationary portion. The seal also includes a retaining plate having a stop that orients the flexible element at a second angle proximate the free second end when the rotor is operating at equal to or greater than the critical speed, such that the flexible element forms a dynamic seal between the rotor and the stationary portion.
Abstract:
Embodiments of a method for monitoring an annular packer are provided herein. In some embodiments, a method for monitoring a sealing element of a blowout preventer may include providing a fluid to a chamber disposed within a blowout preventer to actuate a piston disposed within the chamber, wherein the actuation of the piston causes a reduction of an inner diameter of a sealing element; measuring one or more parameters of the fluid via a sensor; receiving data relating to the one or more parameters from the sensor; determining a stiffness of the sealing element utilizing the data relating to the one or more parameters; and determining an amount of degradation of the sealing element by comparing the determined stiffness of the sealing element to a known data profile.
Abstract:
A method implemented using at least one processor includes receiving a plurality of measured operational parameters of a turbo machine having a rotor and a stator. The plurality of measured operational parameters includes a plurality of real-time operational parameters and a plurality of stored operational parameters. The method further includes generating a finite element model of the turbo machine and generating a plurality of snapshots based on the finite element model and the plurality of stored operational parameters. The method further includes generating a reduced order model based on the plurality of snapshots. The method also includes determining an estimated clearance between the rotor and the stator during operation of the turbo machine, based on the reduced order model and the plurality of real-time operational parameters.
Abstract:
A rotary machine seal assembly (200) includes seal segments (102) configured to circumferentially extend around a rotor (108) between a stator (106) and the rotor (108) of a rotary machine. One or more seal segments include a shoe plate (110, 410, 710, 910), a seal base (112, 412, 712, 912), and at least one intermediate member (114, 414, 714). The shoe plate is disposed along the rotor. The seal base is disposed radially outward of the shoe plate. At least one intermediate member is coupled to and disposed between the seal base and the shoe plate. The at least one intermediate member includes an actuator portion (302, 402, 702, 902) having first coefficient of thermal expansion and a constrictor portion (304, 404, 704, 904) having a different, second coefficient of thermal expansion. The at least one intermediate member is configured to move the shoe plate from a radially outward position to a radially inward position with respect to the rotor responsive to the at least one intermediate member undergoing a temperature change.
Abstract:
A tunneling device includes a body assembly, an expander coupled to the body assembly and extending along a longitudinal axis, and a tip coupled to the expander. The expander is disposed between a force transmitter and the tip. The expander is expandable in a direction perpendicular to the longitudinal axis between a first configuration having a first width measured perpendicular to the longitudinal axis and a second configuration having a second width measured perpendicular to the longitudinal axis. The tip has a width measured perpendicular to the longitudinal axis. The first width of the expander is equal to or less than the width of the tip. The force transmitter is configured to deliver a force through the expander to the tip to move the tip in a direction parallel to the longitudinal axis with the expander in the second configuration.
Abstract:
This disclosure is directed to seal assemblies for a turbomachine. The seal assemblies include one or more paired rotors and stators and at least one interface between the rotors and the stators. The components of the stator may be axially and radially movable by vibrations and other mechanical interference. The stators comprise a sealing element, a seal housing, and a stator interface connected to the engine housing. In some examples, seal assembly includes a damping element to isolate one or more of the rotating components from vibrations mechanical interference that might misalign the rotating components from the stationary components while the turbomachine is operational. In some examples, the damping element is positioned between the seal housing and the stator interface. In other examples, the damping element is positioned between the stator interface and the engine housing.
Abstract:
A turbine engine is provided. The turbine engine defines a radial direction and includes: a rotor; a stator comprising a carrier; a seal assembly disposed between the rotor and the stator, the seal assembly comprising a first seal segment, the seal segment having a seal face configured to form a fluid bearing with the rotor; and a seal support assembly, the seal support assembly comprising a prestressed spring assembly extending from the seal segment for biasing the seal segment along the radial direction.
Abstract:
A seal assembly for a component of a turbomachine and method of assembly thereof is provided. The seal assembly includes at least one mating face positioned adjacent to the component and a seal coupled to the mating face. The seal includes an outer shell defining an interior space; an inner matrix filling the interior space comprising a plurality of unit cells comprising one or more metamaterials, wherein at least a portion of the plurality of unit cells are identical, and wherein the plurality of unit cells are repeated throughout the inner matrix; and one or more support struts extending throughout the inner matrix. The method of building the seal assembly may include selecting a first material for the outer shell and selecting the one or more metamaterials for the inner matrix based on the first material.
Abstract:
A system for use in navigating and/or forming a tunnel includes a tunneling device including a body assembly and a fluid line coupled to the body assembly. The body assembly includes a first section and a second section that are configured to selectively adjust their size and move the body assembly through an underground location when a pressurized fluid is delivered to the body assembly through the fluid line. The system further includes at least one sensor coupled to the body assembly and/or the fluid line. The at least one sensor is configured to provide information related to an operating parameter of at least one of the first section of the body assembly or the second section of the body assembly. The system also includes a controller configured to determine an environmental characteristic of the tunnel based on the information provided by the at least one sensor.
Abstract:
A flexible seal for sealing between two adjacent gas turbine components includes a forward end, an aft end axially separated from the forward end, and an intermediate portion between the forward end and the aft end. The intermediate portion defines a continuous curve in the circumferential direction, such that the aft end is circumferentially offset from the forward end. In other cases, the forward and aft ends are axially, radially, and circumferentially offset from one another. A method of sealing using the flexible seal includes inserting, in an axial direction, the aft end of the flexible seal into a recess defined by respective seal slots of two adjacent gas turbine components; and pushing the flexible seal in an axial direction through the recess until the forward end is disposed within the recess.