Abstract:
A coupling element for an ultrasonic transducer, which comprises a first recess provided for the arrangement of a piezoelectric element and comprising a terminal base surface in which an ultrasound signal generated by the piezoelectric element can be fed into the coupling element. The coupling element comprising inside the first recess one or a plurality of stops, each of which comprises at least one stop surface which extends along a plane, the plane extending parallel to the base surface of the first recess, and there being defined between this plane and the base surface a space for accommodating material for an acoustic adaptation layer. The invention further concerns an ultrasonic transducer and an ultrasonic flow meter.
Abstract:
An ultrasonic transducer, comprising a coupling element which has a first recess, the first recess being provided for the arrangement of a piezoelectric element which feeds an ultrasound signal into the coupling element, and there being disposed between the piezoelectric element and the coupling element an intermediate layer which comprises a metal disc, the metal disc comprising retaining elements each with a first segment lying on the same plane as the metal disc and projecting radially from the perimeter of the metal disc and each having a second segment which adjoins the first segment, projects from the plane of the metal plate and is connected to the first segment.
Abstract:
An ultrasonic flow measurement device for ascertaining flow velocity, respectively volume flow, of a fluid, especially a gas or a liquid, using a travel-time difference method, comprising: a measuring tube having a straight measuring tube axis; at least one transmitter for transmitting an acoustic signal; at least one receiver for receiving the acoustic signal; and at least one reflection surface for reflecting the acoustic signal. The transmitter and the receiver are arranged on the tube wall of the measuring tube in such a manner that they can transmit the acoustic signal inclined or perpendicularly to the flow direction of the fluid, wherein at least one reflection surface is embodied concavely in a preferential direction; and a method for ascertaining flow velocity, respectively volume flow, of a fluid.