Abstract:
Some embodiments of vacuum electronics call for nanoscale field-enhancing geometries. Methods and apparatus for using nanoparticles to fabricate nanoscale field-enhancing geometries are described herein. Other embodiments of vacuum electronics call for methods of controlling spacing between a control grid and an electrode on a nano- or micron-scale, and such methods are described herein.
Abstract:
Some embodiments of vacuum electronics call for nanoscale field-enhancing geometries. Methods and apparatus for using nanoparticles to fabricate nanoscale field-enhancing geometries are described herein. Other embodiments of vacuum electronics call for methods of controlling spacing between a control grid and an electrode on a nano- or micron-scale, and such methods are described herein.
Abstract:
A food storage unit and method includes passively identifying a user of the food storage unit and logging one or more food acquisitions by the user. A container for use with the food storage unit includes means for determining an amount of food in the container and communicating this information to the food storage unit.
Abstract:
A fuel tank includes a port and an open-cell foam. The open-cell foam is configured to retain a liquid fuel by an interfacial surface tension between the open-cell foam and the liquid fuel. The open-cell foam is configured to selectively release the liquid fuel when a surfactant is applied to the open-cell foam to reduce the interfacial surface tension between the open-cell foam and the liquid fuel.
Abstract:
Embodiments disclosed herein relate to a garment system including at least one sensor, and at least one actuator that operates responsive to sensing feedback from the at least one sensor to activate a flexible compression garment to selectively constrict or selectively dilate. Such selective constriction or dilation against the at least one body part can improve muscle functioning, or joint functioning during an activity such as a sport or other athletic activity.
Abstract:
Graphene grids are configured for applications in vacuum electronic devices. A multilayer graphene grid is configured as a filter for electrons in a specific energy range, in a field emission device or other vacuum electronic device. A graphene grid can be deformable responsive to an input to vary electric fields proximate to the grid. A mesh can be configured to support a graphene grid.
Abstract:
A vacuum electronic device includes a multi-layer graphene grid that includes at least two layers of graphene, where the transmission of electrons through the multi-layer graphene grid can be tuned by varying the parameters of the vacuum electronic device such as the number of graphene layers, relative positions of the electrodes, voltage biases applied to the electrodes, and other device parameters.