Abstract:
Some embodiments of the disclosure relate to an optical transmission system that operates at a wavelength in the range from 950 nm to 1600 nm and that employs a single-mode optical transmitter and an optical receiver optically coupled to respective ends of a multimode fiber designed for 850 nm multimode operation. The optical transmission system also employs at least one single mode fiber situated within the optical pathway between the optical transmitter and the receiver and coupled to the multimode fiber.
Abstract:
Some embodiments of the disclosure relate to an optical transmission system that operates at a wavelength in the range from 950 nm to 1600 nm and that employs a single-mode optical transmitter and an optical receiver optically coupled to respective ends of a multimode fiber designed for 850 nm multimode operation. The optical transmission system also employs at least one single mode fiber situated within the optical pathway between the optical transmitter and the receiver and coupled to the multimode fiber.
Abstract:
Some embodiments of the disclosure relate to an optical transmission system that operates at a wavelength in the range from 950 nm to 1600 nm and that employs a single-mode optical transmitter and an optical receiver optically coupled to respective ends of a multimode fiber designed for 850 nm multimode operation. The optical transmission system also employs at least one single mode fiber situated within the optical pathway between the optical transmitter and the receiver and coupled to the multimode fiber.
Abstract:
A multimode optical fiber includes a core region in having silica and an outer radius, R. A cladding of the fiber surrounds the core region and includes silica. The core region has a refractive index profile with a radially-dependent alpha. The radially-dependent alpha is given by α(r)=f(r).
Abstract:
Methods for modifying multi-mode optical fiber manufacturing processes are disclosed. In one embodiment, a method for modifying a process for manufacturing multi-mode optical fiber includes measuring at least one characteristic of a multi-mode optical fiber. The at least one characteristic is a modal bandwidth or a differential mode delay at one or more wavelengths. The method further includes determining a measured peak wavelength of the multi-mode optical fiber based on the measured characteristic, determining a difference between the target peak wavelength and the measured peak wavelength, and modifying the process for manufacturing multi-mode optical fiber based on the difference between the target peak wavelength and the measured peak wavelength.
Abstract:
Methods of selecting, from a set of like optical fibers, a subset of optical fibers that can meet both short-wavelength and target-wavelength bandwidth requirements are disclosed. The method includes obtaining short-wavelength bandwidth data from DMD measurements, and determining a peak wavelength for each optical fiber. A target-wavelength bandwidth is then calculated using the determined peak wavelengths. The calculated target bandwidth is then compared to the short-wavelength and target-wavelength bandwidth requirements to identify which of the optical fibers satisfy these requirements.
Abstract:
A multimode optical fiber includes a core region in having silica and an outer radius, R. A cladding of the fiber surrounds the core region and includes silica. The core region has a refractive index profile with a radially-dependent alpha. The radially-dependent alpha is given by α(r)=f(r).
Abstract:
Some embodiments of the disclosure relate to an optical transmission system that operates at a wavelength in the range from 950 nm to 1600 nm and that employs a single-mode optical transmitter and an optical receiver optically coupled to respective ends of a multimode fiber designed for 850 nm multimode operation. The optical transmission system also employs at least one single mode fiber situated within the optical pathway between the optical transmitter and the receiver and coupled to the multimode fiber.
Abstract:
Systems and methods are disclosed for converting a legacy 850 nm optical-fiber link in a data center to a 1310 nm optical-fiber link. The methods include accessing the primary optical fiber of the legacy 850 nm optical-fiber link and optically connecting thereto one or more sections of compensating optical fiber. The resulting 1310 nm link has a peak wavelength of nominally 1310 nm and supports a bandwidth of greater than 2 GHz·km and a data rate of at least 25 Gb/s.
Abstract:
A multimode optical fiber includes: (i) a graded index glass core having a radius R1 in the range of 20 microns to 50 microns, a maximum relative refractive index Δ1MAX in the range between 0.5% and 3%; a graded index having a profile with (a) by an alpha (α) parameter wherein 1.9≦α≦2.2, and (b) a deviation from the alpha profile in at least one region of the core, such that the difference in the refractive index delta of the core from that determined by the core alpha value, at the radius R1 is less than 0.001, and (ii) a cladding surrounding and in contact with the core, wherein the fiber has an bandwidth greater than 5000 MHz-km at a wavelength λ where λ≧800 nm.