Abstract:
Systems and methods enable a virtual machine, including any applications executing thereon, to quickly start executing and servicing users based on pre-staged data blocks supplied from a backup copy in secondary storage. An enhanced media agent may pre-stage certain backed up data blocks which may be needed to launch the virtual machine, based on predictive analysis pertaining to the virtual machine's operational profile. The enhanced media agent may also pre-stage backed up data blocks for a virtual-machine-file-relocation operation, based on the operation's relocation scheme. Servicing read requests to the virtual machine may take priority over ongoing pre-staging of backed up data. Read requests may be tracked so that the media agent may properly maintain the contents of an associated read cache. Some embodiments of the illustrative storage management system may lack, or may simply not require, the relocation operation, and may operate in a “live mount” configuration.
Abstract:
According to certain aspects, a system may include a data agent configured to: process a database file residing on a primary storage device(s) to identify a subset of data in the database file for archiving, the database file generated by a database application; and extract the subset of the data from the database file and store the subset of the data in an archive file on the primary storage device(s) as a plurality of blocks having a common size; and at least one secondary storage controller computer configured to, as part of a secondary copy operation in which the archive file is copied to a secondary storage device(s): copy the plurality of blocks to the secondary storage devices to create a secondary copy of the archive file; and create a table that provides a mapping between the copied plurality of blocks and corresponding locations in the secondary storage device(s).
Abstract:
A data storage system receives a user instruction through a user interface to restore a specific virtual machine file from a block-level backup. The system accesses a file index which is created during the block-level backup by accessing the file allocation table of the underlying host system and associating the blocks with the file location information of the virtual machine files stored in the file allocation table. The system further creates a file level table based at least in part on the virtual machine file information stored in the file index, displays a listing of the virtual machine files from the file level table, and receives a user selected virtual machine file to restore.
Abstract:
Techniques for enabling user search of content stored in a file archive include providing a search interface comprising a search rules portion and an action rules portion, receiving a file archive search criterion comprising at least one search rule, and searching the file archive using the search criterion. The techniques also include generating a set of files filtered using the search criterion and performing an action specified in the action rules portion on a file included in the set of files.
Abstract:
A data storage system protects virtual machines using block-level backup operations and restores the data at a file level. The system accesses the virtual machine file information from the file allocation table of the host system underlying the virtualization layer. A file index associates this virtual machine file information with the related protected blocks in a secondary storage device during the block-level backup. Using the file index, the system can identify the specific blocks in the secondary storage device associated with a selected restore file. As a result, file level granularity for restore operations is possible for virtual machine data protected by block-level backup operations without restoring more than the selected file blocks from the block-level backup data.
Abstract:
A data storage system restores selected virtual machine files from a block-level backup without restoring blocks associated with files other than the selected virtual machine file. The system identifies the one or more blocks associated with a selected file from a file index that is created during the block-level backup of the virtual machine by accessing the file allocation tables of the underlying host system and associating the locations of the blocks with the file information from the file allocation table for the virtual files of the virtual machine. The system further restores the identified blocks without restoring blocks associated with files other than the selected file and/or file version, recreates the selected file from the restored blocks, and presents the restored file to the user.