Abstract:
Disclosed herein are systems, methods, and computer-readable storage media for enabling improved cancellation of self-interference in full-duplex communications, or the transmitting and receiving of communications in a single frequency band without requiring time, frequency, or code divisions. The system estimates the signal strength and phase of a self-interference signal, generates a cancellation signal based on this estimate, then uses the cancellation signal to suppress the self-interference before sampling received analog signal. After applying the cancellation signal, the system samples and digitizes the remaining analog signal. The digitized signal is then subjected to additional digital cancellation, allowing for extraction of the desired signal.
Abstract:
A system and method for establishing windows that govern the exchange of acknowledgements in a full-duplex communication. The window is established for two nodes which transmit asymmetric frame sizes in full-duplex mode. The window is related to the size of the asymmetric frames. Frames are exchanged in full-duplex between the two nodes, and the window size is defined as enabling the nodes to send data until the number of unacknowledged frames at the nodes is less than or equal to the window size, at which point acknowledgments are exchanged simultaneously. In sending the acknowledgment, both nodes can send acknowledgments simultaneously in full-duplex in the same frequency bin.
Abstract:
A system, method, and computer-readable storage media for reducing monopolization of a frequency channel during full-duplex communications. The MAC layer of governing communications can be modified to reduce likelihood of monopolization by (1) in networks which are exclusively filled with full-duplex devices, configuring non-communicating devices to ignore data collisions of communicating devices, requiring the communicating devices to wait for an standard backoff time after the data transmission is complete; and/or (2) in mixed half-duplex/full-duplex networks, requiring a half-duplex nodes and/or a full-duplex node to wait an extended duration after the data transmission is complete, while the non-communicating devices do not wait an extended duration.
Abstract:
A system and method for establishing windows that govern the exchange of acknowledgements in a full-duplex communication. The window is established for two nodes which transmit asymmetric frame sizes in full-duplex mode. The window is related to the size of the asymmetric frames. Frames are exchanged in full-duplex between the two nodes, and the window size is defined as enabling the nodes to send data until the number of unacknowledged frames at the nodes is less than or equal to the window size, at which point acknowledgments are exchanged simultaneously. In sending the acknowledgment, both nodes can send acknowledgments simultaneously in full-duplex in the same frequency bin.
Abstract:
An Internet protocol Multimedia Subsystem (IMS) gateway application server includes an originating application server module adapted to invoke call control services in response to requests initiated by a voice over Internet Protocol (IP) (VoIP) client associated with a communication device such as an IP telephone. Disclosed gateway application servers include a proxy server module adapted to notify the communication client of session control messages intended for the communication device.
Abstract:
An Internet protocol Multimedia Subsystem (IMS) gateway application server includes an originating application server module adapted to invoke call control services in response to requests initiated by a voice over Internet Protocol (IP) (VoIP) client associated with a communication device such as an IP telephone. Disclosed gateway application servers include a proxy server module adapted to notify the communication client of session control messages intended for the communication device.