Abstract:
Position, navigation and/or timing (PNT) solutions may be provided with levels of precision that have previously and conventionally been associated with carrier phase differential GPS (CDGPS) techniques that employ a fixed terrestrial reference station or with GPS PPP techniques that employ fixed terrestrial stations and corrections distribution networks of generally limited terrestrial coverage. Using techniques described herein, high-precision PNT solutions may be provided without resort to a generally proximate, terrestrial ground station having a fixed and precisely known position. Instead, techniques described herein utilize a carrier phase model and measurements from plural satellites (typically 4 or more) wherein at least one is a low earth orbiting (LEO) satellite. For an Iridium LEO solution, particular techniques are described that allow extraction of an Iridium carrier phase observables, notwithstanding TDMA gaps and random phase rotations and biases inherent in the transmitted signals.
Abstract:
Certain embodiments are directed to techniques (e.g., a device, a method, a memory or non-transitory computer readable medium storing code or instructions executable by one or more processors) for communication techniques between an electronic device (e.g., a smart speaker, a smart TV, a smart appliance, etc.) and one or more mobile devices (e.g., a smartphone, a tablet, a wearable device etc.). Techniques can vary the rate the mobile device responds to ranging messages based on one or more factors. These factors can include a state of the mobile device (e.g., awake or asleep), mobile device orientation (e.g., face down), application state (e.g., music App active), motion of the mobile device (e.g., at rest for period of time), and a range (distance/angle) between the mobile device and the speaker to conserve battery life. The range to the electronic device can activate one or more features on the mobile device.
Abstract:
Certain embodiments are directed to techniques (e.g., a device, a method, a memory or non-transitory computer readable medium storing code or instructions executable by one or more processors) for communication techniques between an electronic device (e.g., a smart speaker, a smart TV, a smart appliance, etc.) and one or more mobile devices (e.g., a smartphone, a tablet, a wearable device etc.). Techniques can vary the rate the mobile device responds to ranging messages from the smart speaker based on one or more factors. These factors can include a state of the mobile device (e.g., awake or asleep), mobile device orientation (e.g., face down), application state (e.g., music App active), motion of the mobile device (e.g., at rest for period of time), and a range (distance/angle) between the mobile device and the speaker to conserve battery life. The range to the electronic device can activate one or more smart speaker features on the mobile device.
Abstract:
In some implementations, the device may include conducting ranging with one or more playback devices to determine ranging information between the mobile device and each of the one or more playback devices, where the one or more playback devices are configured to play the streaming data when received from the mobile device, and where the ranging information provides at least one of a distance and an orientation between the mobile device and each of the one or more playback devices. In addition, the device may include detecting a selection of a media item. Also, the device may include identifying a particular playback device from the one or more playback devices for playing the selected media item based on the ranging information of the mobile device relative to each of the one or more playback devices.
Abstract:
A mobile device can include ranging circuitry to determine distance to another mobile device. A first wireless protocol can establish an initial communication session to perform authentication and/or exchange ranging settings. A second protocol can perform ranging, and other wireless protocols can transmit content. In one example, the distance information can be used to display a relative position of another device on a user interface of a sending device. The user interface can allow a user to quickly and accurately select the recipient device for sending the data item. As another example, the distance information obtained from ranging can be used to trigger a notification (e.g., a reminder) to be output from a first mobile device or used to display a visual indicator on a receiving device. Proximity of a device (e.g., as determined by a distance) can be used to suggest recipient for a new communication.
Abstract:
In some aspects, a mobile device may receive, from a transmitting device, the signal by a plurality of antennas. The mobile device may measure one or more phase differences among the signal received at the plurality of antennas. The mobile device may determine a first set of possible values for the angle of arrival that are consistent with the one or more phase differences. The mobile device may measure one or more signal values using one or more sensors of the mobile device. The mobile device may for each of the first set of possible values, determining a confidence score based on the one or more signal values. The mobile device may select, based on the confidence scores, one of the first set of possible values as the angle of arrival.
Abstract:
Certain embodiments are directed to techniques (e.g., a device, a method, a memory or non-transitory computer readable medium storing code or instructions executable by one or more processors) for passive beacon communication techniques. Transmitting devices (e.g., beacons) can transmit advertising messages using a first wireless protocol to provide timing for ranging messages for one of more ranging messages over a second protocol (e.g., UWB). One or more receiving devices can determine using signal strength if the devices are within a threshold range to perform communication techniques. Various ranging communications techniques can be used to determine a range between the receiving device and transmitting device. Other techniques can be used to passively calculate the angle of arrival for transmitter signals. The angle of arrival information can be used for precise position locating for the receiving device or to indicate interest in information provided by the one or more transmitting devices.
Abstract:
A mobile device may receive a plurality of timestamps, wherein the plurality of timestamps indicate sending and receiving time for ranging packets and response packets. The mobile device may calculate a responder turn-around time as a first difference between the second time and the first time. The mobile device may calculate a responding round trip time as a second difference between the second time and the third time. The mobile device may receive from the electronic device an initiator turn-around time and an initiator round trip time. The mobile device may calculate a frequency offset for the wireless protocol using the responder turn-around time, the responding round trip time, the initiator turn-around time, and the initiator round trip time. The mobile device may compare an observed frequency offset to the calculated frequency offset to determine a frequency offset difference and whether it exceeds a threshold, adjusting a ranging measurement.
Abstract:
Certain embodiments are directed to techniques (e.g., a device, a method, or a non-transitory computer readable medium storing code or instructions executable by one or more processors) for many-to-many communication techniques for coordinating communications among a group of mobile devices that can be performed by a first mobile devices. The first mobile device can transmit a request to establish outgoing pairwise ranging sessions with other mobile devices of the group. Each of the mobile devices of the group of mobile devices can establish ranging sessions with the other mobile devices. Each mobile device can act as both an initiating device and a responding device for the ranging session. The first mobile device can detect one or more redundant ranging sessions the mobile devices. The first mobile device can identify whether to keep or terminate each of the one or more redundant ranging sessions based on a common criterion.
Abstract:
Certain embodiments are directed to techniques (e.g., a device, a method, or a non-transitory computer readable medium storing code or instructions executable by one or more processors) for many-to-many communication techniques for coordinating communications among a group of mobile devices that can be performed by a first mobile devices. The first mobile device can transmit a request to establish outgoing pairwise ranging sessions with other mobile devices of the group. Each of the mobile devices of the group of mobile devices can establish ranging sessions with the other mobile devices. Each mobile device can act as both an initiating device and a responding device for the ranging session. The first mobile device can detect one or more redundant ranging sessions the mobile devices. The first mobile device can identify whether to keep or terminate each of the one or more redundant ranging sessions based on a common criterion.