Abstract:
A memory circuit includes volatile memory cells coupled to bit lines, and nonvolatile memory cells coupled to the volatile memory cells via the bit lines but not via complement bit lines.
Abstract:
A combination memory device including a static random access memory (SRAM) and a read only memory (ROM) comprises first memory cells and second memory cells arranged in rows and columns, in which each of the first memory cells includes an SRAM cell and a ROM cell and is arranged adjacent to at least one of the second memory cells, and each of the second memory cells includes an SRAM cell and does not include a ROM cell.
Abstract:
A nonvolatile semiconductor memory device includes a control circuit, an inverting circuit, and memory units, each of the memory units including a latch having a first node and a second node, a plate line, a first MIS transistor having one of source/drain nodes coupled to the first node of the latch, another one of the source/drain nodes coupled to the plate line, and a gate node coupled to a word line, and a second MIS transistor having one of source/drain nodes coupled to the second node of the latch, another one of the source/drain nodes coupled to the plate line, and a gate node coupled to the word line, wherein the control circuit is configured to invert the data latched in the latch by reading the data from the latch, causing the inverting circuit to invert the read data, and writing the inverted data to the latch.
Abstract:
A shadow RAM or “non-volatile SRAM” memory cell is implemented in a much smaller area by building the cell upward rather than outward. By stacking non-volatile storage devices above or below an SRAM cell, a smaller cell can be provided and result in a lower cost memory device. In certain embodiments, such a memory cell includes a pair of cross-coupled devices disposed on a first device layer and defining a pair of internal cross-coupled nodes, and a pair of non-volatile storage devices disposed on a second device layer above or below the pair of cross-coupled devices and coupled to the cross-coupled nodes.
Abstract:
First and second complimentary static random-access-memory cell bit lines are coupled to first and second bit nodes through first and second access transistors controlled by a word line. A first inverter has an input coupled to the first bit node and an output coupled to the second bit node. A second inverter has an input coupled to the second bit node and an output coupled to the first bit node through a first transistor switch. A transistor switch is coupled between the output of a non-volatile memory cell and the first bit node. A control circuit coupled to the gate of the transistor switch. Either the drive level of the non-volatile memory cell is selected to overpower the output of the second inverter or the second inverter is decoupled from the first bit node while the output of the non-volatile memory cell is coupled to the first bit node.
Abstract:
A shadow RAM or “non-volatile SRAM” memory cell is implemented in a much smaller area by building the cell upward rather than outward. By stacking non-volatile storage devices above or below an SRAM cell, a smaller cell can be provided and result in a lower cost memory device. In certain embodiments, such a memory cell includes a pair of cross-coupled devices disposed on a first device layer and defining a pair of internal cross-coupled nodes, and a pair of non-volatile storage devices disposed on a second device layer above or below the pair of cross-coupled devices and coupled to the cross-coupled nodes.
Abstract:
A nonvolatile semiconductor memory device is provided for a high-powered system without the need for an additional system setting process to set the system initialization state after power-on to the previous state. The nonvolatile semiconductor memory device comprises a pull-up driving unit configured to include a plurality of nonvolatile cells for storing inputted data and to pull up a storage node, a pull-down driving unit configured to pull down the storage node, and a plurality of data registers including a data input/output unit configured to selectively input/output data between a bit line and the storage node depending on a voltage applied to a word line.
Abstract:
An arrangement for storing user programmed system timing information in a microprogrammable system in the event of a power outage. The system includes a static random access memory (RAM) for periodically storing microprocessor-generated timing information and an electrically erasable programmable ROM (EEPROM) which is coupled to the static RAM for the temporary storage of this information in the event of a power outage. Also provided in the system is a power down sensor responsive to an AC-coupled power supply for detecting power loss to the system. When the input voltage drops below a predetermined value, the contents of the static RAM are automatically transferred to the nonvolatile EEPROM. When system input power is restored, the stored contents of the nonvolatile EEPROM are automatically retransferred back to the static RAM for use by the microprocessor permitting the resumption of system operation as previously programmed on a time-shifted basis where the time shift equals the duration of the power outage. The system is particularly adapted for use with a user-programmed device, such as a television receiver or a video cassette recorder, in an environment where power outages of very short duration randomly occur. The present invention permits such a system to resume programmed system operation following resumption of power to the system without employing the combination of a battery, an oscillator, a CMOS RAM and appropriate recharging circuitry, as generally utilized in such systems.
Abstract:
A digital system includes a non-volatile calculating register having a set of latches configured to perform a calculation. A set of non-volatile storage cells is coupled to the set of latches. Access detection logic is coupled to the calculating register and is operable to initiate a calculation of a next value by the calculating register each time the calculating register is accessed by an accessing module. The access detection logic is operable to cause the next value to be stored in the set of non-volatile storage cells at the completion of the calculation as an atomic transaction. After a power loss or other restore event, the contents of the calculating register may be restored from the non-volatile storage cells.
Abstract:
Technology for a system is described. The system can include one or more processors. The system can include a memory associated with the one or more processors. The system can include a memory controller comprising logic to create a reserved memory region in a system physical address (SPA) map. The memory controller can comprise logic to detect when the one or more processors are brought online. The memory controller can comprise logic to map the memory associated with the one or more processors that are brought online to the reserved memory region in the SPA map.