Abstract:
An aerial surveillance device is provided, comprising an image capturing device capable of being supported by an airframe structure above the ground. The airframe structure includes a body portion defining a longitudinal axis and configured to support the image-capturing device. A tail portion having control surfaces is operably engaged with the body portion along the axis. Transversely-extending wing portions are directly engaged with the body portion. Each wing portion is defined by longitudinally-opposed spars extending from a spaced-apart disposition at the body portion to a common connection distally from the body portion. The spars have a fabric extending therebetween to provide a wing surface. A support member extends along an aerodynamic center, transversely to the body portion, of each wing portion, to tension and rigidify the wing portions so as to provide a positive camber for the wing portions and to form an airfoil.
Abstract:
An unmanned aerial vehicle (UAV) having a design for optimum stowability and low cost. The UAV having a collapsible wing section which can be easily removed from the fuselage, allowing for quick assembly and disassembly and ease of portability. The unmanned aerial vehicle includes a primary wing assembly, a fuselage, a means for propelling the unmanned aerial vehicle, and means for remotely controlling the unmanned aerial vehicle. The primary wing assembly includes a wing having a center spar and two outwardly diverging side spars. The wing also has a pliable flexible material supported by the center spar and the at least two outwardly diverging side spars. The pylon is connected to the wing and supports the wing. The fuselage is connected to the pylon such that the pylon extends away from the fuselage and spaces the wing a distance from the fuselage. The fuselage includes a tail having a rudder located along a trailing edge and elevators located along the trailing edge.
Abstract:
A rotary wing vehicle includes a body structure having an elongated tubular backbone or core, and a counter-rotating coaxial rotor system having rotors with each rotor having a separate motor to drive the rotors about a common rotor axis of rotation. The rotor system is used to move the rotary wing vehicle in directional flight.
Abstract:
The Duffel Bag Airplane is an inflatable flying wing unmanned airborne vehicle (UAV). The fuselage will house everything but the wings. The wing can be rolled up around the fuselage into a small package when deflated for easy transportation, such as by being carried in a duffle bag. Fabric construction, a small internal combustion engine with cooled exhaust, and wing warping controls combine to make the airplane inexpensive and extremely stealthy. All the usual signatures have been suppressed, which allow it to be used to make observations from close range under combat conditions. Control of this airplane is accomplished by warping the wings and is supplemented with stability augmentation.
Abstract:
Disclosed is a spacecraft carrying a number of pods, each containing an aircraft that has been folded to fit in the pod. Each aircraft has a vertical stabilizer and outboard wing-portions that fold around fore-and-aft axes. Each aircraft also has a fuselage that folds around a lateral axis. The spacecraft releases one or more of the pods into an atmosphere. Each of the pods is configured with an ablative heat shield and parachutes to protect its aircraft when the pod descends through the atmosphere. The pod releases its aircraft at a desired altitude or location, and the aircraft unfolds while free-falling. The aircraft then acquires and follows a flight path, and activates scientific experiments and instruments that it carries. The aircraft relays results and readings from the experiments and instruments to the spacecraft, which in turn relays the results and readings to a mission command center.
Abstract:
A shoulder launched unmanned reconnaissance system for providing overhead visual surveillance of remote targets is disclosed. The present system includes a reconnaissance air vehicle which may be fired from a portable launcher, accelerated to flight speed, and remotely controlled using a ground control system. The vehicle is flown to the target area to enable an onboard wide angle video system to transmit video images of the target by radio or fiber optics link to the ground control system for processing and display. The ground control system enables the reconnaissance vehicle to be flown to a recovery area and to descend in a stall mode after the flight is completed for maintenance prior to reuse. The air vehicle includes collapsible wings which are deployable after launch by a spring actuated mechanism. The fuselage of the air vehicle carries an onboard video camera, an electric motor, a battery, a global positioning system receiver, flight controls, and a data link system.In an alternative embodiment, the fuselage of the air vehicle includes a storage bay with a rotary mechanism capable of deploying sensors for chemical and biological warfare agents or other dropable payloads such as dye markers for marking fleeing motor vehicles. The present system is capable of conducting overhead surveillance up to a range of approximately 10 kilometers.
Abstract:
Vehicles such as unmanned air vehicles that are capable of movement from an open, flight configuration to an enclosed configuration in which all major flight components can be protected by an outer shell are disclosed. In the enclosed configuration, the vehicles can take on standard geometric shapes such as a rectangular prism, sphere, cylinder, or another shape, so as to not be recognizable as an unmanned air vehicle. Embodiments of vehicles can also include interchangeable and/or wireless motor arms, motor arms which are electrically connected to the remainder of the vehicle only when in an open configuration, remote controllers removably attached to the remainder of the vehicle, and clip or other attachment mechanisms for attachment to objects such as backpacks.
Abstract:
A rotary wing vehicle includes a body structure having an elongated tubular backbone or core, and a counter-rotating coaxial rotor system having rotors with each rotor having a separate motor to drive the rotors about a common rotor axis of rotation. The rotor system is used to move the rotary wing vehicle in directional flight.
Abstract:
The disclosed inventions include personal Unmanned Aerial Vehicles (UAV's) and UAV universal docking ports “docking ports” to be incorporated into and/or attached to headwear, including helmets, hard hats and hats and face masks, as well as footwear including boots and shoes, clothing and outerwear, devices, gear and equipment, land, air, water and space vehicles, buildings, wireless towers and other mobile or stationary objects and surfaces referred to collectively as “docking stations”. A docking station may have one or more docking ports for docking, networking and charging or refueling compact personal UAVs, and for providing data communications between said UAVs and other electronic devices that remain with the person while the UAV is in flight or driving or landed on terrain. Said docking ports may also incorporate wireless power transmission for remote wireless charging of one or more UAV's. Supplemental power for recharging said UAVs when docked may be supplied by integrated battery(s) in said docking port or me be provided directly from the docking station or other connected power source.
Abstract:
A collapsible wing, methods of producing the collapsible wing, and an unmanned aircraft system that includes the collapsible wing are provided.