Abstract:
A sensory substitution device (SSD) for providing a person with neural signals responsive to features of an environment, the SSD comprising: at least one camera that acquires an image of the environment; and at least one corneal neural stimulator that stimulates nerve endings in the cornea of an eye of the person to generate neural signals responsive to the image that propagate to the person's brain.
Abstract:
An imaging lens unit is presented, comprising an imaging lens having a lens region defining an effective aperture, and a phase coder. The phase coder may be incorporated with or located close to the lens region. The phase coder defines a surface relief along the lens region formed by at least three phase patterns extending along the lens region. Each of the phase patterns differently affecting light components of one of at least three different wavelength ranges while substantially not affecting propagation of light components of other of said at least three wavelength ranges. The surface relief affects light propagation through the lens region to extend a depth of focus for at least one of said at least three wavelength ranges.
Abstract:
A method for mapping includes projecting onto an object a pattern of multiple spots having respective positions and shapes, such that the positions of the spots in the pattern are uncorrelated, while the shapes share a common characteristic. An image of the spots on the object is captured and processed so as to derive a three-dimensional (3D) map of the object.
Abstract:
An optical processor is presented for applying optical processing to a light field passing through a predetermined imaging lens unit. The optical processor comprises a pattern in the form of spaced apart regions of different optical properties. The pattern is configured to define a phase coder, and a dispersion profile coder. The phase coder affects profiles of Through Focus Modulation Transfer Function (TFMTF) for different wavelength components of the light field in accordance with a predetermined profile of an extended depth of focusing to be obtained by the imaging lens unit. The dispersion profile coder is configured in accordance with the imaging lens unit and the predetermined profile of the extended depth of focusing to provide a predetermined overlapping between said TFMTF profiles within said predetermined profile of the extended depth of focusing.
Abstract:
A method for mapping includes projecting onto an object a pattern of multiple spots having respective positions and shapes, such that the positions of the spots in the pattern are uncorrelated, while the shapes share a common characteristic. An image of the spots on the object is captured and processed so as to derive a three-dimensional (3D) map of the object.
Abstract:
An imaging system is presented for imaging objects within a field of view of the system. The imaging system comprises an imaging lens arrangement, a light detector unit at a certain distance from the imaging lens arrangement, and a control unit connectable to the output of the detection unit. The imaging lens arrangement comprises an imaging lens and an optical element located in the vicinity of the lens aperture, said optical element introducing aperture coding by an array of regions differently affecting a phase of light incident thereon which are randomly distributed within the lens aperture, thereby generating an axially-dependent randomized phase distribution in the Optical Transfer Function (OTF) of the imaging system resulting in an extended depth of focus of the imaging system. The control unit is configured to decode the sampled output of the detection unit by using the random aperture coding to thereby extract 3D information of the objects in the field of view of the light detector unit.
Abstract:
A system, apparatus and method of performing 3-D object profile inter-planar estimation and/or range inter-planar estimation of objects within a scene, including: providing a predefined finite set of distinct types of features, resulting in feature types, each feature type being distinguishable according to a unique bi-dimensional formation; providing a coded light pattern having multiple appearances of the feature types; projecting the coded light pattern, having axially varying intensity, on objects within a scene, the scene having at least two planes, resulting in a first plane and a second plane; capturing a 2-D image of the objects having the projected coded light pattern projected thereupon, resulting in a captured 2-D image, the captured 2-D image including reflected feature types; determining intensity values of the 2-D captured image; and performing 3-D object profile inter-planar estimation and/or range inter-planar estimation of objects within the scene based on determined intensity values.
Abstract:
An imaging arrangement and method for extended the depth of focus are provided. The imaging arrangement comprises an imaging lens having a certain affective aperture, and an optical element associated with said imaging lens. The optical element is configured as a phase-affecting, non-diffractive optical element defining a spatially low frequency phase transition. The optical element and the imaging lens define a predetermined pattern formed by spaced-apart substantially optically transparent features of different optical properties. Position of at least one phase transition region of the optical element within the imaging lens plane is determined by at least a dimension of said affective aperture.
Abstract:
A method for causing the localized malfunctioning of a digital camera in a specified area; (102) to degrade photographic recording by the digital camera, comprising the steps of coupling the digital camera to a source of'electromagnetic interference (104, 106) and generating electromagnetic waves (108) of a frequency to interfere with the correct functioning of at least one electronic component of the digital camera.
Abstract:
A method is presented for imaging an object. The method comprises imaging a coherent speckle pattern propagating from an object, using an imaging system being focused on a plane displaced from the object.