Abstract:
The present disclosure relates generally to a sliding seal between two components. The sliding seal includes a first seal section including one or more first slots formed therein, a second seal section including one or more second slots formed therein and one or more frustoconical rings disposed in respective ones of the slots, such that the first and second seal sections and the frustoconical rings move relative to one another during relative movement between the two components. A wave spring disposed between the first and second seal sections biases the first and second seal sections away from one another.
Abstract:
A seal assembly arrangement for a gas turbine engine includes first and second non-rotating structures respectively that provide first and second faces. A sealing assembly includes first and second sealing rings respectively that engage the first and second faces. The first and second sealing rings slideably engage one another at a sliding wedge interface.
Abstract:
The present disclosure relates generally to a seal between two circumferential components. The seal comprises a plurality of seal segments disposed adjacent one another by a retaining ring that is at least partially disposed within a cavity formed within each of the plurality of seal segments.
Abstract:
A seal assembly extends along an axis and seals an axial (and/or radial) gap between a first component and a second component. The seal assembly includes a seal carrier and a seal element. The seal element extends axially (and/or radially) between a first portion and a second portion. The first portion of the seal element is slidingly arranged within a slot in an axial end (or a radial side) of the seal carrier. The second portion of the seal element is configured to axially (and/or radially) engage the second component.
Abstract:
A vane cluster for a gas turbine engine includes a first end-of-cluster vane, a second end-of-cluster vane, a neighbor vane adjacent to said second end-of-cluster vane; and a multiple of base vanes between said first end-of-cluster vane and said neighbor vane.
Abstract:
A seal assembly extends along an axis and seals an axial (and/or radial) gap between a first component and a second component. The seal assembly includes a seal carrier and a seal element. The seal element extends axially (and/or radially) between a first portion and a second portion. The first portion of the seal element is slidingly arranged within a slot in an axial end (or a radial side) of the seal carrier. The second portion of the seal element is configured to axially (and/or radially) engage the second component.
Abstract:
The present disclosure relates to advanced materials, particularly single crystal grain structures including the formation of single crystal grain structures. Single crystal grain structures offer improved mechanical properties when used with individual components. Improving mechanical properties is favorable for components that are used in applications with high temperature, pressure, and stress. In these applications, mechanical failure is extremely undesirable. Individual components, such as seals, can be designed with a single crystal grain structure in a preferred direction. By selecting a preferred direction, and orienting the single crystal grain structure accordingly, the single crystal grain structure can improve the component's mechanical properties. Single crystal grain structure seals and the method of forming the seals, therefore, offer various improvements to individual components, specifically when the components are designed for high temperature, pressure, and stress applications.
Abstract:
A seal for sealing a radially outer component of a gas turbine engine stator to a radially inner component thereof includes an axially resilient seal carrier adapted for mounting the seal carrier and including at a radially inner portion thereof, a pair of radially spaced, axially extending, radially resilient jaws adapted to clamp a sealing element such as a rope seal there between in sealing engagement with a radially inner component of the engine stator.
Abstract:
A seal system may comprise a seal cavity defined, at least partially, by a first axial surface and a second axial surface. The second axial surface may be recessed with respect to the first axial surface. A brush seal may be disposed in the seal cavity. The brush seal may comprise a first bristle pack and a backing plate coupled to the first bristle pack. A first group of bristles of the first bristle pack may be radially inward of the first axial surface.
Abstract:
A brush seal is provided that includes a top plate, a back plate, and a bristle pack. The bristle pack is secured at a joint between the top plate and the back plate. The bristle pack includes a first bristle set extending from the joint, a second bristle set extending from the joint, and a sliding backing plate. The sliding backing plate includes a sliding portion and a support portion. The sliding portion is disposed contiguous with the second bristle set. The support portion has an inner face and a support face. The inner face is in contact with a distal end of the second bristle set. The support face is configured to support at least a portion of the first bristle set. The sliding backing plate is configured to slide relative to the second bristle set.