Abstract:
A method for fabricating a semiconductor device includes the steps of: forming a first inter-metal dielectric (IMD) layer on a substrate; forming a first patterned mask on the first IMD layer, in which the first patterned mask includes a first slot extending along a first direction; forming a second patterned mask on the first patterned mask, in which the second patterned mask includes a second slot extending along a second direction and the first slot intersects the second slot to form a third slot; and forming a first metal interconnection in the third slot.
Abstract:
A method for fabricating semiconductor device includes the steps of: providing a substrate; forming a first gate structure on the substrate, a first spacer around the first gate structure, and an interlayer dielectric (ILD) layer around the first spacer; performing a first etching process to remove part of the ILD layer for forming a recess; performing a second etching process to remove part of the first spacer for expanding the recess; and forming a contact plug in the recess.
Abstract:
A manufacturing method of a semiconductor structure includes the following steps. An epitaxial region is formed in a semiconductor substrate. A dielectric layer is formed on the epitaxial region, and a contact hole is formed in the dielectric layer. The contact hole exposes a part of the epitaxial region, and an oxide-containing layer is formed on the epitaxial region exposed by the contact hole. A contact structure is formed in the contact hole and on the oxide-containing layer. The oxide-containing layer is located between the contact structure and the epitaxial region. A semiconductor structure includes the semiconductor substrate, at least one epitaxial region, the contact structure, the oxide-containing layer, and a silicide layer. The contact structure is disposed on the epitaxial region. The oxide-containing layer is disposed between the epitaxial region and the contact structure. The silicide layer is disposed between the oxide-containing layer and the contact structure.
Abstract:
A method for fabricating semiconductor device is disclosed. First, a substrate is provided, a first gate structure is formed on the substrate, a first spacer is formed around the first gate structure, and an interlayer dielectric (ILD) layer is formed around the first spacer. Next, a first etching process is performed to remove part of the ILD layer for forming a recess, a second etching process is performed to remove part of the first spacer for expanding the recess, and a contact plug is formed in the recess.
Abstract:
A method for manufacturing semiconductor devices having metal gate includes follow steps. A substrate including a plurality of isolation structures is provided. A first nFET device and a second nFET device are formed on the substrate. The first nFET device includes a first gate trench and the second nFET includes a second gate trench. A third bottom barrier layer is formed in the first gate trench and a third p-work function metal layer is formed in the second gate trench, simultaneously. The third bottom barrier layer and the third p-work function metal layer include a same material. An n-work function metal layer is formed in the first gate trench and the second gate trench. The n-work function metal layer in the first gate trench directly contacts the third bottom barrier layer, and the n-work function metal layer in the second gate trench directly contacts the third p-work function metal layer.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of : providing a substrate; forming a first gate structure on the substrate; forming a first contact plug adjacent to the first gate structure; and performing a replacement metal gate (RMG) process to transform the first gate structure into metal gate.
Abstract:
A method for manufacturing semiconductor devices having metal gate includes follow steps. A substrate including a plurality of isolation structures is provided. A first nFET device and a second nFET device are formed on the substrate. The first nFET device includes a first gate trench and the second nFET includes a second gate trench. A third bottom barrier layer is formed in the first gate trench and a third p-work function metal layer is formed in the second gate trench, simultaneously. The third bottom barrier layer and the third p-work function metal layer include a same material. An n-work function metal layer is formed in the first gate trench and the second gate trench. The n-work function metal layer in the first gate trench directly contacts the third bottom barrier layer, and the n-work function metal layer in the second gate trench directly contacts the third p-work function metal layer.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a gate structure thereon and an interlayer dielectric (ILD) layer around the gate structure; forming a dielectric layer on the ILD layer and the gate structure; forming an opening in the dielectric layer and the ILD layer; forming an organic dielectric layer (ODL) on the dielectric layer and in the opening; removing part of the ODL; removing part of the dielectric layer for extending the opening; removing the remaining ODL; and forming a contact plug in the opening.
Abstract:
A shallow trench isolation (STI) and method of forming the same is provided. The STI structure includes an upper insulating portion and a lower insulating portion, where the lower insulating portion includes a first insulator and an insulating layer surrounding the first insulator, the upper insulating portion includes a second insulator and a buffer layer surrounding the second insulator. A part of the buffer layer interfaces between the first insulator and the second insulator, and the outer sidewall of the buffer layer and the sidewall of the first insulator are leveled.
Abstract:
A shallow trench isolation (STI) and method of forming the same is provided. The STI structure includes an upper insulating portion and a lower insulating portion, where the lower insulating portion includes a first insulator and an insulating layer surrounding the first insulator, the upper insulating portion includes a second insulator and a buffer layer surrounding the second insulator. Apart of the buffer layer interfaces between the first insulator and the second insulator, and the outer sidewall of the buffer layer and the sidewall of the first insulator are leveled.