Abstract:
The present disclosure provides a scanned image correction apparatus, method and a mobile scanning device. The apparatus includes an image collector, an arm swing detector, and an image processor. The image collector is configured to collect a scanned image of an object under inspection during a scanning process of scanning the object under inspection by the mobile scanning device, and determine an image parameter of the scanned image. The arm swing detector is disposed at a monitor point on a detector arm of the mobile scanning device, and configured to detect a displacement offset of the detector arm in a specified direction and build an arm swing model of the detector arm. The image processor is configured to determine a change relationship between the image parameter of the scanned image and the displacement offset of the detector arm, and correct the scanned image based on the change relationship.
Abstract:
The present invention discloses a wiping-type sample sampling and feeding device, a card reading apparatus, and a gate machine apparatus. The wiping-type sample sampling and feeding device comprises a thermally desorbing portion for analyzing a substance; a wiping-type sampling portion for wiping the substance on a card or certificate and includes a first wheel, a second wheel and a wiping conveyor belt that travels between the first and second wheels along a first direction; and a card/certificate conveyor portion including a card carrying belt configured to convey a card or certificate along a second direction so that the card or certificate can contact with the wiping conveyor belt during conveyance of the card or certificate, thereby the wiping conveyor belt wipes a surface of the card or certificate, wherein the second direction is substantially perpendicular to the first direction.
Abstract:
The invention discloses a safety inspection detector and a goods safety inspection system. The safety inspection detector at least comprises a circuit board, a first housing, a second housing, a detection module and a connecting interface. The detection module and the connecting interface are mounted on the circuit board. The first housing is pressed and connected to a first surface of the circuit board, and the second housing is pressed and connected to a second surface of the circuit board. The first housing and the second housing can hermetically wrap the detection module and electronic devices on the circuit board, but bypass the connecting interface to realize leading-out and connection with related interconnected cables by utilizing the connecting interface. The housings can be used for sealing and protecting sensitive electronic devices in the detector, thus being moisture proof and preventing interference.
Abstract:
There is provided a wideband patch antenna and an antenna array. The antenna includes a dielectric substrate of a rectangle shape, a radiation patch formed on a top surface of the dielectric substrate, a coupling patch formed on the top surface of the dielectric substrate and extending from a side of the dielectric substrate to a position from the radiation patch by a distance, a metal support arranged on the lower surface of the dielectric substrate and extending from the edge of the lower surface of the dielectric substrate downward to the ground, a layer of air having a predetermined thickness being formed between the lower surface of the dielectric substrate and the ground. According to the embodiments, it is possible to improve the directivity of the wideband microstrip antenna while maintaining its small size.
Abstract:
The present disclosure provides a system and method for inspecting an aircraft. A ray source and a detector locate at above and below of a fuselage of an aircraft, respectively. The ray source emits a beam of rays, which pass through the aircraft to be detected. The detector receives and converts the beam of rays that pass through the aircraft to an output signal, and generates a vertical transmission image in real time.
Abstract:
The present invention discloses an X-ray beam intensity monitoring device and an X-ray inspection system. The X-ray beam intensity monitoring device comprises an intensity detecting module and a data processing module, wherein the intensity detecting module is adopted to be irradiated by the X-ray beam and send a detecting signal, the data processing module is coupled with the intensity detecting module to receive the detecting signal and output an X-ray beam intensity monitoring signal, wherein the X-ray beam intensity monitoring signal includes a dose monitoring signal of the X-ray beam and a brightness correction signal of the X-ray beam. The X-ray beam intensity monitoring device can simultaneously perform dose monitoring and brightness monitoring, thereby improving the service efficiency of the X-ray beam intensity monitoring device. Moreover, the monitoring result of the X-ray beam intensity can be more accurate and reliable.
Abstract:
A method for processing a ceramic scintillator array, characterized in that, comprising the following steps: (a) forming, in a first direction, a predetermined number of straight first-direction through-cuts which are parallel to each other and spaced from each other on a scintillator substrate by using laser; (b) adequately filling the first-direction through-cuts with an adhesive and solidifying the adhesive; (c) forming, in a second direction. a predetermined number of second direction through-cuts which are parallel to each other at a predetermined interval on the scintillator substrate by using laser, wherein the second direction is perpendicular to the first direction; and (d) adequately filling the second direction through-cuts with the adhesive and solidifying the adhesive bond.
Abstract:
The present invention provides a privacy protection method and a human body security inspection system having the same function. The privacy protection method comprises the steps of: acquiring in real-time scanning row or column image data of a personal to be inspected; displaying a physical profile image and an outline image of the personal to be inspected, on basis of the processed image of the scanning row or column image data; transmitting the physical profile image to an equipment end display in a human body security inspection system and displaying it thereon, and displaying the outline image of the personal to be inspected on a remote operation end display of the human body security inspection system; performing the suspicious matter recognition based on the outline image; and correspondingly displaying a suspected frame on the physical profile image, based on the suspicious matter recognized in the outline image.
Abstract:
A human body back-scattering inspection method and system are discloses. The method includes: obtaining a back-scattering scan image of a human body under inspection; distinguishing a body image from a background image in the back-scattering scan image; and calculating a feature parameter of the background image to determine whether radioactive substance is carried with the human body. With some embodiments of the present disclosure, it is possible to determine whether any radioactive substance is carried with a human body during back-scattering inspection of the human body. In further embodiments of the present disclosure, it is possible to approximately determine which part(s) of the human body carries the radioactive substance. This improves efficiency of inspection.
Abstract:
Disclosed are a retrieving system and a retrieving method based on content of fluoroscopic images, the retrieving system comprising: a pre-classifying module, configured to pre-classify fluoroscopic images; an image content feature extracting module, configured to perform feature extraction for contents of the fluoroscopic images; an image representing module, configured to construct an image representation vector; a retrieving module, configured to construct a result of preliminary candidates; a diversified filtering module, configured to filter the result of preliminary candidates, select an image subset capable of covering a plurality of article categories, and thereby construct a diversified retrieval result; a correlation feedback regulating module, configured to receive information feedback on the retrieval result from a user, and update the retrieval model; and an interacting module, configured to display the retrieval result, and collect feedback on user's satisfaction of the retrieval result.