Abstract:
The present invention discloses a transistor driving module, coupling to a converting controller, to driving a high side transistor and a low side transistor connected in series, wherein one end of the high side transistor is coupled to an input voltage and one end of the low side transistor is grounded. The transistor driving module comprises a high side driving unit, a low side driving unit, a current limiting unit and an anti-short through unit. The high side driving unit generates a high side driving signal to turn the high side transistor on according to a duty cycle signal, and the low side driving unit generates a low side driving signal turn the low side transistor on according to the high side driving signal. The current limiting unit is coupled to the high side transistor and the high side driving unit, and generates a current limiting signal when a current flowing through the high side transistor higher than a current limiting value. The high side driving unit is stopped to generate the high side driving signal when receiving the current limiting value. The anti-short through unit is coupled to the high side driving unit and the low side driving unit to control the generations of the high side driving signal and the low side driving signal to have the timings of the high side driving signal and the low side driving signal non-overlapped.
Abstract:
An LED current control circuit including a current adjusting unit, a detecting unit, and a current control unit is provided. The current adjusting unit has a current control end coupled to an LED string for determining an amount of current flowing through the LED string according to a current control signal. The detecting unit detects the current control end and determines whether to generate a protecting signal according to a protecting voltage value. The current control unit generates the current control signal to control the amount of current flowing through the LED string of and determines whether to stop the current flowing through the LED string according to the protecting signal.
Abstract:
The present invention provides an LED driving circuit with temperature compensation, comprising a power transforming circuit, an LED module and a controller. The transforming circuit receives an electrical power from an input power source and transforms it into an output voltage according to a control signal. The LED module is coupled to the transforming circuit. The controller generates the control signal according to an operation temperature and a voltage feedback signal indicative of the output voltage, and makes the output voltage decrease with increasing operation temperature. Therefore, the LED driving circuit of the present invention has an effect of temperature compensation that compensates the influence of the decreased driving voltage of the LED module due to temperature.
Abstract:
An LED driving circuit is used for dimming by switching between an operating current and a maintaining current or by voltage clamping of a source/drain of MOSFET that is coupled to the LED module. When the LED module is dimmed off, the voltage across the LED module can be kept at a value around a lighting threshold voltage of the LED module that is a minimum voltage for lighting the LED module. Therefore, a voltage difference between the drain and the source of MOSFET coupled to the LED module is smaller than that in the conventional arts. Hence, a withstand voltage of MOSFET can be reduced, and cost of the LED driving circuit as well as the power consumption of MOSFET can be lessened, thereby improving integral efficiency of the circuit.
Abstract:
The invention provides an image processing method and device to determine whether the timing signal is abnormal by detecting timing signal related to the image signal output to the display. When the timing signal is abnormal, the display receives no the timing signal related to the image signal. The horizontal synchronous signal and vertical synchronous signal prevent the elements in the display, such as electron gun, from operating with abnormal signals, enhancing display lifetime.
Abstract:
The present invention provides a full-bridge driving controller and a full-bridge converting circuit, which have the function of soft switch, to provide a DC output voltage. The present invention employs a resonant unit to oscillate the current flowing through the converting circuit at a resonant frequency. The full-bridge driving controller switches four full-bridge transistor switches at an operating frequency higher than the resonant frequency, so as to achieve the function of soft switch.
Abstract:
A controller with protection function, for controlling a transistor having a control terminal, a first terminal coupled to a load, a second terminal, is disclosed. The controller comprises a judgment unit and a current control unit. The judgment unit is coupled to the transistor and generates a current reducing signal when a potential of the first terminal of the transistor or a voltage difference between the first terminal and the second terminal of the transistor is higher than a preset value. The current control unit is coupled to the control terminal of the transistor for substantially stabilizing the current flowing through the transistor at a preset current value, and reduces the current flowing from the preset current value when receiving the current reducing signal.
Abstract:
The resonant converting circuit comprises a resonant circuit, a current detecting circuit and the resonant controller. The resonant controller controls a power conversion of the resonant circuit for converting an input voltage into an output voltage and the resonant controller comprises an over current judgment unit and an over current protection unit. The over current judgment unit determines whether the resonant current is higher than an over current value according to a current detecting signal generated by the current detecting circuit. The over current protection unit generates a protection signal in response to a determined result of the over current judgment unit and an indication signal indicative of an operating state of the resonant controller. The resonant controller executes a corresponding protecting process in response to the protection signal.
Abstract:
The present invention provides a feedback control circuit and an LED driving circuit for using the same, wherein the feedback control circuit receives a dimming signal. The dimming signal is changed between a first state and a second state. When being in the first state, the feedback control circuit controls a converter circuit to drive the LED module for lighting stably. When being in the second state, the feedback control circuit controls the converter circuit to maintain the power conversion of the converter circuit to have an output voltage outputted by the converter circuit maintained at a level close to a lighting threshold voltage of the LED module.
Abstract:
An LED driving circuit includes a first and a second LED modules, a first and a second switching converters, an extreme voltage detecting and selecting circuit, a current balance circuit and a controller. The first switching converter transforms electric power of an input power supply into a first output voltage for lighting the first LED module. The second switching converter transforms electric power of the input power supply into a second output voltage for lighting the second LED module. The current balance circuit balances the currents flowing through the first and the second LED modules. The extreme voltage detecting and selecting circuit detects the first and the second LED modules and selects to output one of detecting results. The controller controls the transforming of the first switching converter and the second switching converter to light the first and the second LED modules in response to the outputted detecting result.