Abstract:
Methods and apparatuses for performing wireless communication are provided. In some embodiments, a method performed by a terminal of a wireless communication system, includes receiving, from a base station of the wireless communication system, cross-carrier scheduling configuration information; identifying whether the cross-carrier scheduling configuration information for a secondary cell (SCell) comprises a carrier indicator field (CIF) presence field; receiving, from the base station, downlink control information for another cell on the SCell based on identifying that the cross-carrier scheduling configuration information comprises the CIF presence field; and receiving, from the base station, data using the another cell according to the downlink control information, wherein the cross-carrier scheduling configuration information indicates a CIF value of the SCell when the CIF presence field is configured for two or more cells.
Abstract:
An electronic device and method for efficiently processing overheat in an electronic device are provided. The electronic device includes a transceiver and at least one processor configured to identify overheat inside the electronic device and transmit, to a base station, a first message containing overheat assistance information generated in response to identifying the overheat inside the electronic device.
Abstract:
The present disclosure relates to a communication technique for converging IoT technology with a 5G communication system for supporting a higher data transmission rate beyond a 4G system, and a system therefor. The present disclosure may be applied to an intelligent service (for example, a smart home, a smart building, a smart city, a smart car or connected car, health care, digital education, retail business, a security and safety-related service, etc.) on the basis of 5G communication technology and IoT-related technology. According to one embodiment of the present disclosure, a method of a terminal of a communication system comprises: receiving, from a base station, first downlink control information (DCI) including first priority information; receiving, from the base station, second DCI including second priority information; checking whether a first uplink transmission resource, associated with the first DCI, and a second uplink transmission resource, associated with second DCI, overlap on a time axis; and if the first uplink transmission resource and the second uplink transmission resource overlap on the time axis, carrying out uplink transmission for the higher priority information on the basis of the first priority information and the second priority information.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transmission rate compared to a 4G communication system such as an LTE. According to an embodiment of the present invention, a method performed by a terminal in a wireless communication system comprises the steps of: identifying, by a first processor of the terminal, a state of the terminal; transmitting the state of the terminal to a second processor of the terminal; identifying an electric power-related parameter associated with the state of the terminal; and transmitting, to a base station, a terminal message including the electric power-related parameter.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting higher data transfer rates than that of a beyond 4G communication system such as LTE. A control method of a terminal in a wireless communication system, according to an embodiment of the present invention, may comprise the steps of: receiving radio resource control signaling (RRC signaling) for a signal measured by a terminal; identifying a transmission interval of a signal measured by the terminal, on the basis of the received RRC signaling; identifying first information for forming a predetermined beam; and determining whether to change the first information for forming a beam to second information for forming a beam, on the basis of the identified transmission interval.
Abstract:
Disclosed are a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system; and a system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, health care, digital education, retail, security, and safety-related services, and the like) on the basis of 5G communication technology and IoT-related technology. The present invention relates to a method and device for managing transmission beams of a terminal in a 5G system.
Abstract:
According to various embodiments, an electronic device includes: a communication processor, a transceiver which is electrically connected to the communication processor, a first power amplifier which is electrically connected to the transceiver; a first antenna which is electrically connected to the first power amplifier; and a first supply adjustor which is electrically connected to the communication processor and the first power amplifier, wherein the communication processor can be set to perform a first determination about whether a first carrier bandwidth part (BP) of a first signal transmitted through the first antenna exceeds a first threshold value, perform a second determination about whether the power of the first signal exceeds a second threshold value, select a first tracking mode as an envelope tracking (ET) mode or an average power tracking (APT) mode on the basis of at least a portion of the first determination and the second determination, and control the first supply adjustor using the selected first tracking mode.
Abstract:
The present disclosure relates a communication technique that fuses a 5G communication system supporting a higher data transmission rate following a 4G system with IoT technology and a system therefor. The present disclosure can be applied to intelligent services (e.g., smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail, security and safety related services, etc.) on the basis of 5G communication technology and IoT related technology. A method for transmitting a scheduling request (SR) of a terminal according to the present invention comprises the steps of: receiving SR configuration information; performing channel sensing of an unlicensed band in case that the SR is triggered in the unlicensed band; and waiting for SR transmission in case that a channel is occupied as a result of the channel sensing.
Abstract:
The present disclosure relates to a communication scheme and system for converging a 5th generation (5G) communication system for supporting a data rate higher than that of a 4th generation (4G) system with an interne of things (IoT) technology. The present disclosure is applicable to intelligent services (e.g., smart homes, smart buildings, smart cities, smart cars, connected cars, health care, digital education, retails, and security and safety-related services) based on the 5G communication technology and IoT-related technology. A method for transmitting and receiving a signal in a wireless communication system includes determining a resource of a second communication system which is prone to a collision with a sounding reference signal (SRS) of a first communication system, transmitting reserved resource information indicating the collision-prone resource to a terminal, and receiving a signal transmitted by the terminal based on the reserved resource information, wherein no signal being transmitted on the collision-prone resource.
Abstract:
A device and a method for providing multimedia content to various electronic devices are provided. A method for operating the electronic device includes establishing an MBMS session through a communication interface; receiving multimedia data through the MBMS session; receiving additional multimedia data through a unicast session in response to a user request, and reproducing a high quality multimedia content corresponding to the multimedia data by decoding the received multimedia data with the received additional multimedia data.